Spaces:
Sleeping
Sleeping
update app
Browse files
app.py
CHANGED
|
@@ -17,30 +17,30 @@ resolution = 512
|
|
| 17 |
# sd_dreambooth_model._diffusion_model = db_diffusion_model
|
| 18 |
|
| 19 |
# checkpoint of the converted Stable Diffusion from KerasCV
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
|
| 29 |
# generate images
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
|
| 41 |
-
|
| 42 |
|
| 43 |
-
|
| 44 |
|
| 45 |
# customize interface
|
| 46 |
title = "KerasCV Stable Diffusion Demo on images of Ace."
|
|
@@ -161,12 +161,12 @@ The following hyperparameters were used during training for Stable Diffusion v1.
|
|
| 161 |
with gr.Blocks() as card_interface:
|
| 162 |
gr.Markdown(model_card)
|
| 163 |
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
#
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
|
| 171 |
|
| 172 |
-
gr.TabbedInterface([card_interface], ["Model Card"]).launch()
|
|
|
|
| 17 |
# sd_dreambooth_model._diffusion_model = db_diffusion_model
|
| 18 |
|
| 19 |
# checkpoint of the converted Stable Diffusion from KerasCV
|
| 20 |
+
model_ckpt = "nielsgl/dreambooth-keras-pug-ace-sd2.1"
|
| 21 |
+
pipeline = StableDiffusionPipeline.from_pretrained(model_ckpt)
|
| 22 |
+
pipeline.to("cuda")
|
| 23 |
|
| 24 |
+
unique_id = "puggieace"
|
| 25 |
+
class_label = "dog"
|
| 26 |
+
prompt = f"A photo of {unique_id} {class_label} on the beach"
|
| 27 |
+
image = pipeline(prompt, num_inference_steps=50).images[0]
|
| 28 |
|
| 29 |
# generate images
|
| 30 |
+
def infer(prompt, negative_prompt, guidance_scale=10, num_inference_steps=50):
|
| 31 |
+
neg = negative_prompt if negative_prompt else None
|
| 32 |
+
imgs = []
|
| 33 |
+
while len(imgs) != 2:
|
| 34 |
+
next_prompt = pipeline(prompt, negative_prompt=neg, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, num_images_per_prompt=5)
|
| 35 |
+
for img, is_neg in zip(next_prompt.images, next_prompt.nsfw_content_detected):
|
| 36 |
+
if not is_neg:
|
| 37 |
+
imgs.append(img)
|
| 38 |
+
if len(imgs) == 2:
|
| 39 |
+
break
|
| 40 |
|
| 41 |
+
return imgs
|
| 42 |
|
| 43 |
+
output = gr.Gallery(label="Outputs").style(grid=(1,2))
|
| 44 |
|
| 45 |
# customize interface
|
| 46 |
title = "KerasCV Stable Diffusion Demo on images of Ace."
|
|
|
|
| 161 |
with gr.Blocks() as card_interface:
|
| 162 |
gr.Markdown(model_card)
|
| 163 |
|
| 164 |
+
demo_interface = gr.Interface(infer, inputs=[gr.Textbox(label="Positive Prompt", value="a photo of puggieace dog getting a haircut"),
|
| 165 |
+
gr.Textbox(label="Negative Prompt", value="bad anatomy, blurry"),
|
| 166 |
+
# gr.Slider(label='Number of gen image', minimum=1, maximum=4, value=2, step=1),
|
| 167 |
+
gr.Number(label='Guidance scale', value=12),
|
| 168 |
+
gr.Slider(label="Inference Steps",value=50),
|
| 169 |
+
], outputs=[output], title=title, description=description, examples=examples).queue()
|
| 170 |
|
| 171 |
|
| 172 |
+
gr.TabbedInterface([card_interface, demo_interface], ["Model Card", "Demo 🤗"]).launch()
|