Testing
Browse files
app.py
CHANGED
|
@@ -1,61 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
|
| 3 |
-
|
|
|
|
| 4 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
# Load models from Hugging Face
|
| 9 |
-
segmentation_model = pipeline("image-segmentation", model="nvidia/segformer-b1-finetuned-cityscapes-1024-1024")
|
| 10 |
-
depth_estimator = pipeline("depth-estimation", model="Intel/zoedepth-nyu-kitti")
|
| 11 |
-
|
| 12 |
-
def process_image(image, blur_type, sigma):
|
| 13 |
-
# Step 1: Perform segmentation
|
| 14 |
-
segmentation_results = segmentation_model(image)
|
| 15 |
-
foreground_mask = segmentation_results[-1]["mask"]
|
| 16 |
-
|
| 17 |
-
# Step 2: Apply Gaussian blur to background
|
| 18 |
-
blurred_background = image.filter(ImageFilter.GaussianBlur(sigma))
|
| 19 |
-
segmented_output = Image.composite(image, blurred_background, foreground_mask)
|
| 20 |
-
|
| 21 |
-
# Step 3: Perform depth estimation
|
| 22 |
-
depth_results = depth_estimator(image)
|
| 23 |
-
depth_map = depth_results["depth"]
|
| 24 |
-
|
| 25 |
-
# Step 4: Normalize depth map values
|
| 26 |
-
depth_array = np.array(depth_map)
|
| 27 |
-
normalized_depth = (depth_array - np.min(depth_array)) / (np.max(depth_array) - np.min(depth_array)) * 255
|
| 28 |
-
normalized_depth_image = Image.fromarray(normalized_depth.astype('uint8'))
|
| 29 |
-
|
| 30 |
-
# Step 5: Apply variable Gaussian blur based on depth map (Lens Blur)
|
| 31 |
-
if blur_type == "Lens Blur":
|
| 32 |
-
variable_blur_image = image.copy()
|
| 33 |
-
for x in range(variable_blur_image.width):
|
| 34 |
-
for y in range(variable_blur_image.height):
|
| 35 |
-
blur_intensity = normalized_depth[y, x] / 255 * sigma # Scale blur intensity by depth value
|
| 36 |
-
pixel_value = image.getpixel((x, y))
|
| 37 |
-
variable_blur_image.putpixel((x, y), tuple(int(p * blur_intensity) for p in pixel_value))
|
| 38 |
-
output_image = variable_blur_image
|
| 39 |
-
else:
|
| 40 |
-
output_image = segmented_output
|
| 41 |
-
|
| 42 |
-
return segmented_output, normalized_depth_image, output_image
|
| 43 |
-
|
| 44 |
-
# Create Gradio interface
|
| 45 |
-
app = gr.Interface(
|
| 46 |
-
fn=process_image,
|
| 47 |
-
inputs=[
|
| 48 |
-
gr.Image(type="pil", label="Upload Image"),
|
| 49 |
-
gr.Radio(["Gaussian Blur", "Lens Blur"], label="Blur Type", value="Gaussian Blur"),
|
| 50 |
-
gr.Slider(0, 50, step=1, label="Blur Intensity (Sigma)", value=15)
|
| 51 |
-
],
|
| 52 |
-
outputs=[
|
| 53 |
-
gr.Image(type="pil", label="Segmented Output with Background Blur"),
|
| 54 |
-
gr.Image(type="pil", label="Depth Map Visualization"),
|
| 55 |
-
gr.Image(type="pil", label="Final Output with Selected Blur")
|
| 56 |
-
],
|
| 57 |
-
title="Vision Transformer Segmentation & Depth-Based Blur Effects",
|
| 58 |
-
description="Upload an image and select the type of blur effect (Gaussian or Lens). Adjust the blur intensity using the slider."
|
| 59 |
-
)
|
| 60 |
-
|
| 61 |
-
app.launch()
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
"""
|
| 4 |
+
Created on Thu Mar 27 13:56:42 2025
|
| 5 |
+
@author: perghect
|
| 6 |
+
"""
|
| 7 |
import gradio as gr
|
| 8 |
+
import requests
|
| 9 |
+
import io
|
| 10 |
+
import torch
|
| 11 |
import numpy as np
|
| 12 |
+
from PIL import Image, ImageFilter
|
| 13 |
+
from torchvision import transforms
|
| 14 |
+
from transformers import AutoModelForImageSegmentation, AutoImageProcessor, AutoModelForDepthEstimation
|
| 15 |
+
|
| 16 |
+
# Set device and precision
|
| 17 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 18 |
+
torch.set_float32_matmul_precision('high')
|
| 19 |
+
|
| 20 |
+
# Load models at startup
|
| 21 |
+
rmbg_model = AutoModelForImageSegmentation.from_pretrained("briaai/RMBG-2.0", trust_remote_code=True).to(device).eval()
|
| 22 |
+
depth_processor = AutoImageProcessor.from_pretrained("depth-anything/Depth-Anything-V2-Small-hf")
|
| 23 |
+
depth_model = AutoModelForDepthEstimation.from_pretrained("depth-anything/Depth-Anything-V2-Small-hf").to(device)
|
| 24 |
+
|
| 25 |
+
def load_image_from_link(url: str) -> Image.Image:
|
| 26 |
+
"""Downloads an image from a URL and returns a Pillow Image."""
|
| 27 |
+
response = requests.get(url)
|
| 28 |
+
response.raise_for_status()
|
| 29 |
+
image = Image.open(io.BytesIO(response.content)).convert("RGB")
|
| 30 |
+
return image
|
| 31 |
+
|
| 32 |
+
# Gaussian Blur Functions
|
| 33 |
+
def run_rmbg(image: Image.Image, threshold=0.5):
|
| 34 |
+
"""Runs the RMBG-2.0 model on the image and returns a binary mask."""
|
| 35 |
+
try:
|
| 36 |
+
image_size = (1024, 1024)
|
| 37 |
+
transform_image = transforms.Compose([
|
| 38 |
+
transforms.Resize(image_size),
|
| 39 |
+
transforms.ToTensor(),
|
| 40 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
| 41 |
+
])
|
| 42 |
+
|
| 43 |
+
input_images = transform_image(image).unsqueeze(0).to(device)
|
| 44 |
+
|
| 45 |
+
with torch.no_grad():
|
| 46 |
+
preds = rmbg_model(input_images)
|
| 47 |
+
if isinstance(preds, list):
|
| 48 |
+
mask_logits = preds[-1]
|
| 49 |
+
else:
|
| 50 |
+
raise ValueError(f"Unexpected output format: {type(preds)}")
|
| 51 |
+
|
| 52 |
+
mask_prob = mask_logits.sigmoid().cpu()[0].squeeze()
|
| 53 |
+
pred_pil = transforms.ToPILImage()(mask_prob)
|
| 54 |
+
mask_pil = pred_pil.resize(image.size, resample=Image.BILINEAR)
|
| 55 |
+
|
| 56 |
+
mask_np = np.array(mask_pil, dtype=np.uint8) / 255.0
|
| 57 |
+
binary_mask = (mask_np > threshold).astype(np.uint8)
|
| 58 |
+
return binary_mask
|
| 59 |
+
except Exception as e:
|
| 60 |
+
raise Exception(f"Error in background removal: {str(e)}")
|
| 61 |
+
|
| 62 |
+
def apply_background_blur(image: Image.Image, mask: np.ndarray, sigma: float = 15):
|
| 63 |
+
"""Applies a Gaussian blur to the background while keeping the foreground sharp."""
|
| 64 |
+
image_np = np.array(image)
|
| 65 |
+
mask_np = mask.astype(np.uint8)
|
| 66 |
+
|
| 67 |
+
blurred_image = image.filter(ImageFilter.GaussianBlur(radius=sigma))
|
| 68 |
+
blurred_np = np.array(blurred_image)
|
| 69 |
+
|
| 70 |
+
output_np = np.where(mask_np[..., None] == 1, image_np, blurred_np)
|
| 71 |
+
output_image = Image.fromarray(output_np.astype(np.uint8))
|
| 72 |
+
return output_image
|
| 73 |
+
|
| 74 |
+
# Lens Blur Functions
|
| 75 |
+
def run_depth_estimation(image: Image.Image, target_size=(512, 512)):
|
| 76 |
+
"""Runs the Depth-Anything-V2-Small model and returns the depth map."""
|
| 77 |
+
try:
|
| 78 |
+
image_resized = image.resize(target_size, resample=Image.BILINEAR)
|
| 79 |
+
inputs = depth_processor(images=image_resized, return_tensors="pt").to(device)
|
| 80 |
+
|
| 81 |
+
with torch.no_grad():
|
| 82 |
+
outputs = depth_model(**inputs)
|
| 83 |
+
predicted_depth = outputs.predicted_depth
|
| 84 |
+
|
| 85 |
+
prediction = torch.nn.functional.interpolate(
|
| 86 |
+
predicted_depth.unsqueeze(1),
|
| 87 |
+
size=image.size[::-1],
|
| 88 |
+
mode="bicubic",
|
| 89 |
+
align_corners=False,
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
depth_map = prediction.squeeze().cpu().numpy()
|
| 93 |
+
depth_max = depth_map.max()
|
| 94 |
+
depth_min = depth_map.min()
|
| 95 |
+
if depth_max == depth_min:
|
| 96 |
+
depth_max = depth_min + 1e-6 # Avoid division by zero
|
| 97 |
+
depth_map = (depth_map - depth_min) / (depth_max - depth_min)
|
| 98 |
+
depth_map = 1 - depth_map # Invert: higher values = farther
|
| 99 |
+
return depth_map
|
| 100 |
+
except Exception as e:
|
| 101 |
+
raise Exception(f"Error in depth estimation: {str(e)}")
|
| 102 |
+
|
| 103 |
+
def apply_depth_based_blur(image: Image.Image, depth_map: np.ndarray, max_radius: float = 15, foreground_percentile: float = 30):
|
| 104 |
+
"""Applies a variable Gaussian blur based on the depth map."""
|
| 105 |
+
image_np = np.array(image)
|
| 106 |
+
|
| 107 |
+
if depth_map.shape != image_np.shape[:2]:
|
| 108 |
+
depth_map = np.array(Image.fromarray(depth_map).resize(image.size, resample=Image.BILINEAR))
|
| 109 |
+
|
| 110 |
+
foreground_threshold = np.percentile(depth_map.flatten(), foreground_percentile)
|
| 111 |
+
|
| 112 |
+
output_np = np.zeros_like(image_np)
|
| 113 |
+
mask_foreground = (depth_map <= foreground_threshold)
|
| 114 |
+
output_np[mask_foreground] = image_np[mask_foreground]
|
| 115 |
+
|
| 116 |
+
depth_max = depth_map.max()
|
| 117 |
+
depth_range = depth_max - foreground_threshold
|
| 118 |
+
if depth_range == 0:
|
| 119 |
+
depth_range = 1e-6
|
| 120 |
+
normalized_depth = np.zeros_like(depth_map)
|
| 121 |
+
mask_above_foreground = (depth_map > foreground_threshold)
|
| 122 |
+
normalized_depth[mask_above_foreground] = (depth_map[mask_above_foreground] - foreground_threshold) / depth_range
|
| 123 |
+
normalized_depth = np.clip(normalized_depth, 0, 1)
|
| 124 |
+
|
| 125 |
+
depth_levels = np.linspace(0, 1, 20)
|
| 126 |
+
for i in range(len(depth_levels) - 1):
|
| 127 |
+
depth_min = depth_levels[i]
|
| 128 |
+
depth_max = depth_levels[i + 1]
|
| 129 |
+
mask = (normalized_depth >= depth_min) & (normalized_depth < depth_max) & (depth_map > foreground_threshold)
|
| 130 |
+
if not np.any(mask):
|
| 131 |
+
continue
|
| 132 |
+
|
| 133 |
+
avg_depth = (depth_min + depth_max) / 2
|
| 134 |
+
blur_radius = max_radius * avg_depth
|
| 135 |
+
|
| 136 |
+
blurred_image = image.filter(ImageFilter.GaussianBlur(radius=blur_radius))
|
| 137 |
+
blurred_np = np.array(blurred_image)
|
| 138 |
+
output_np[mask] = blurred_np[mask]
|
| 139 |
+
|
| 140 |
+
mask_farthest = (normalized_depth >= depth_levels[-1]) & (depth_map > foreground_threshold)
|
| 141 |
+
if np.any(mask_farthest):
|
| 142 |
+
blurred_max = image.filter(ImageFilter.GaussianBlur(radius=max_radius))
|
| 143 |
+
output_np[mask_farthest] = np.array(blurred_max)[mask_farthest]
|
| 144 |
+
|
| 145 |
+
output_image = Image.fromarray(output_np.astype(np.uint8))
|
| 146 |
+
return output_image
|
| 147 |
+
|
| 148 |
+
# Main Processing Function for Gradio
|
| 149 |
+
def process_image(image, blur_type, sigma=15, max_radius=15, foreground_percentile=30):
|
| 150 |
+
"""Processes the image based on the selected blur type."""
|
| 151 |
+
if image is None:
|
| 152 |
+
return None, "Please upload an image."
|
| 153 |
+
|
| 154 |
+
try:
|
| 155 |
+
image = Image.fromarray(image).convert("RGB")
|
| 156 |
+
except Exception as e:
|
| 157 |
+
return None, f"Error processing image: {str(e)}"
|
| 158 |
+
|
| 159 |
+
# Resize image if too large
|
| 160 |
+
max_size = (1024, 1024)
|
| 161 |
+
if image.size[0] > max_size[0] or image.size[1] > max_size[1]:
|
| 162 |
+
image.thumbnail(max_size, Image.Resampling.LANCZOS)
|
| 163 |
+
|
| 164 |
+
try:
|
| 165 |
+
if blur_type == "Gaussian Blur":
|
| 166 |
+
mask = run_rmbg(image, threshold=0.5)
|
| 167 |
+
output_image = apply_background_blur(image, mask, sigma=sigma)
|
| 168 |
+
title = f"Gaussian Blur (sigma={sigma})"
|
| 169 |
+
else: # Lens Blur
|
| 170 |
+
depth_map = run_depth_estimation(image, target_size=(512, 512))
|
| 171 |
+
output_image = apply_depth_based_blur(image, depth_map, max_radius=max_radius, foreground_percentile=foreground_percentile)
|
| 172 |
+
title = f"Lens Blur (max_radius={max_radius}, foreground_percentile={foreground_percentile})"
|
| 173 |
+
except Exception as e:
|
| 174 |
+
return None, f"Error applying blur: {str(e)}"
|
| 175 |
+
|
| 176 |
+
return output_image, title
|
| 177 |
+
|
| 178 |
+
# Gradio Interface with Conditional Parameter Display
|
| 179 |
+
with gr.Blocks() as demo:
|
| 180 |
+
gr.Markdown("# Image Blur Effects with Gaussian and Lens Blur")
|
| 181 |
+
gr.Markdown("""
|
| 182 |
+
This app applies blur effects to your images. Follow these steps to use it:
|
| 183 |
+
**Note**: This app is hosted on Hugging Face Spaces’ free tier and may go to "Sleeping" mode after 48 hours of inactivity. If it doesn’t load immediately, please wait a few seconds while it wakes up.
|
| 184 |
+
1. **Upload an Image**: Click the "Upload Image" box to upload an image from your device.
|
| 185 |
+
2. **Choose a Blur Type**:
|
| 186 |
+
- **Gaussian Blur**: Applies a uniform blur to the background, keeping the foreground sharp. Adjust the sigma parameter to control blur intensity.
|
| 187 |
+
- **Lens Blur**: Applies a depth-based blur, simulating a depth-of-field effect (closer objects are sharp, farther objects are blurred). Adjust the max radius and foreground percentile to fine-tune the effect.
|
| 188 |
+
3. **Adjust Parameters**:
|
| 189 |
+
- For Gaussian Blur, use the "Gaussian Blur Sigma" slider to control blur intensity (higher values = more blur).
|
| 190 |
+
- For Lens Blur, use the "Max Blur Radius" slider to control the maximum blur intensity and the "Foreground Percentile" slider to adjust the depth threshold for the foreground.
|
| 191 |
+
4. **Apply the Blur**: Click the "Apply Blur" button to process the image.
|
| 192 |
+
5. **View the Result**: The processed image will appear in the "Output Image" box, along with a description of the effect applied.
|
| 193 |
+
**Example**: Try uploading an image with a clear foreground and background (e.g., a person in front of a landscape) to see the effects in action.
|
| 194 |
+
""")
|
| 195 |
+
|
| 196 |
+
with gr.Row():
|
| 197 |
+
image_input = gr.Image(label="Upload Image", type="numpy")
|
| 198 |
+
with gr.Column():
|
| 199 |
+
blur_type = gr.Radio(choices=["Gaussian Blur", "Lens Blur"], label="Blur Type", value="Gaussian Blur")
|
| 200 |
+
sigma = gr.Slider(minimum=1, maximum=50, step=1, value=15, label="Gaussian Blur Sigma", visible=True)
|
| 201 |
+
max_radius = gr.Slider(minimum=1, maximum=50, step=1, value=15, label="Max Lens Blur Radius", visible=False)
|
| 202 |
+
foreground_percentile = gr.Slider(minimum=1, maximum=50, step=1, value=30, label="Foreground Percentile", visible=False)
|
| 203 |
+
|
| 204 |
+
# Update visibility of parameters based on blur type
|
| 205 |
+
def update_visibility(blur_type):
|
| 206 |
+
if blur_type == "Gaussian Blur":
|
| 207 |
+
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
|
| 208 |
+
else: # Lens Blur
|
| 209 |
+
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=True)
|
| 210 |
+
|
| 211 |
+
blur_type.change(
|
| 212 |
+
fn=update_visibility,
|
| 213 |
+
inputs=blur_type,
|
| 214 |
+
outputs=[sigma, max_radius, foreground_percentile]
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
process_button = gr.Button("Apply Blur")
|
| 218 |
+
with gr.Row():
|
| 219 |
+
output_image = gr.Image(label="Output Image")
|
| 220 |
+
output_text = gr.Textbox(label="Effect Applied")
|
| 221 |
+
|
| 222 |
+
process_button.click(
|
| 223 |
+
fn=process_image,
|
| 224 |
+
inputs=[image_input, blur_type, sigma, max_radius, foreground_percentile],
|
| 225 |
+
outputs=[output_image, output_text]
|
| 226 |
+
)
|
| 227 |
|
| 228 |
+
# Launch the app
|
| 229 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|