Spaces:
Sleeping
Sleeping
| #!/usr/bin/env python3 | |
| # Copyright 2024 Xiaomi Corp. (authors: Han Zhu) | |
| # | |
| # See ../../../../LICENSE for clarification regarding multiple authors | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from dataclasses import dataclass | |
| from typing import Union | |
| import numpy as np | |
| import torch | |
| import torchaudio | |
| from lhotse.features.base import FeatureExtractor, register_extractor | |
| from lhotse.utils import Seconds, compute_num_frames | |
| class VocosFbankConfig: | |
| sampling_rate: int = 24000 | |
| n_mels: int = 100 | |
| n_fft: int = 1024 | |
| hop_length: int = 256 | |
| class VocosFbank(FeatureExtractor): | |
| name = "VocosFbank" | |
| config_type = VocosFbankConfig | |
| def __init__(self, num_channels: int = 1): | |
| config = VocosFbankConfig | |
| super().__init__(config=config) | |
| assert num_channels in (1, 2) | |
| self.num_channels = num_channels | |
| self.fbank = torchaudio.transforms.MelSpectrogram( | |
| sample_rate=self.config.sampling_rate, | |
| n_fft=self.config.n_fft, | |
| hop_length=self.config.hop_length, | |
| n_mels=self.config.n_mels, | |
| center=True, | |
| power=1, | |
| ) | |
| def _feature_fn(self, sample): | |
| mel = self.fbank(sample) | |
| logmel = mel.clamp(min=1e-7).log() | |
| return logmel | |
| def device(self) -> Union[str, torch.device]: | |
| return self.config.device | |
| def feature_dim(self, sampling_rate: int) -> int: | |
| return self.config.n_mels | |
| def extract( | |
| self, | |
| samples: Union[np.ndarray, torch.Tensor], | |
| sampling_rate: int, | |
| ) -> Union[np.ndarray, torch.Tensor]: | |
| # Check for sampling rate compatibility. | |
| expected_sr = self.config.sampling_rate | |
| assert sampling_rate == expected_sr, ( | |
| f"Mismatched sampling rate: extractor expects {expected_sr}, " | |
| f"got {sampling_rate}" | |
| ) | |
| is_numpy = False | |
| if not isinstance(samples, torch.Tensor): | |
| samples = torch.from_numpy(samples) | |
| is_numpy = True | |
| if len(samples.shape) == 1: | |
| samples = samples.unsqueeze(0) | |
| else: | |
| assert samples.ndim == 2, samples.shape | |
| if self.num_channels == 1: | |
| if samples.shape[0] == 2: | |
| samples = samples.mean(dim=0, keepdims=True) | |
| else: | |
| assert samples.shape[0] == 2, samples.shape | |
| mel = self._feature_fn(samples) | |
| # (1, n_mels, time) or (2, n_mels, time) | |
| mel = mel.reshape(-1, mel.shape[-1]).t() | |
| # (time, n_mels) or (time, 2 * n_mels) | |
| num_frames = compute_num_frames( | |
| samples.shape[1] / sampling_rate, self.frame_shift, sampling_rate | |
| ) | |
| if mel.shape[0] > num_frames: | |
| mel = mel[:num_frames] | |
| elif mel.shape[0] < num_frames: | |
| mel = mel.unsqueeze(0) | |
| mel = torch.nn.functional.pad( | |
| mel, (0, 0, 0, num_frames - mel.shape[1]), mode="replicate" | |
| ).squeeze(0) | |
| if is_numpy: | |
| return mel.cpu().numpy() | |
| else: | |
| return mel | |
| def frame_shift(self) -> Seconds: | |
| return self.config.hop_length / self.config.sampling_rate | |