Spaces:
Sleeping
Sleeping
| # Copyright 2021-2025 Xiaomi Corporation (authors: Fangjun Kuang, | |
| # Zengwei Yao) | |
| # | |
| # See ../../LICENSE for clarification regarding multiple authors | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import glob | |
| import logging | |
| import os | |
| import re | |
| from pathlib import Path | |
| from typing import Any, Dict, List, Optional, Union | |
| import torch | |
| import torch.nn as nn | |
| from lhotse.dataset.sampling.base import CutSampler | |
| from torch.cuda.amp import GradScaler | |
| from torch.nn.parallel import DistributedDataParallel as DDP | |
| from torch.optim import Optimizer | |
| from zipvoice.utils.common import AttributeDict | |
| # use duck typing for LRScheduler since we have different possibilities, see | |
| # our class LRScheduler. | |
| LRSchedulerType = object | |
| def save_checkpoint( | |
| filename: Path, | |
| model: Union[nn.Module, DDP], | |
| model_avg: Optional[nn.Module] = None, | |
| model_ema: Optional[nn.Module] = None, | |
| params: Optional[Dict[str, Any]] = None, | |
| optimizer: Optional[Optimizer] = None, | |
| scheduler: Optional[LRSchedulerType] = None, | |
| scaler: Optional[GradScaler] = None, | |
| sampler: Optional[CutSampler] = None, | |
| rank: int = 0, | |
| ) -> None: | |
| """Save training information to a file. | |
| Args: | |
| filename: | |
| The checkpoint filename. | |
| model: | |
| The model to be saved. We only save its `state_dict()`. | |
| model_avg: | |
| The stored model averaged from the start of training. | |
| model_ema: | |
| The EMA version of model. | |
| params: | |
| User defined parameters, e.g., epoch, loss. | |
| optimizer: | |
| The optimizer to be saved. We only save its `state_dict()`. | |
| scheduler: | |
| The scheduler to be saved. We only save its `state_dict()`. | |
| scalar: | |
| The GradScaler to be saved. We only save its `state_dict()`. | |
| sampler: | |
| The sampler used in the labeled training dataset. We only | |
| save its `state_dict()`. | |
| rank: | |
| Used in DDP. We save checkpoint only for the node whose | |
| rank is 0. | |
| Returns: | |
| Return None. | |
| """ | |
| if rank != 0: | |
| return | |
| logging.info(f"Saving checkpoint to {filename}") | |
| if isinstance(model, DDP): | |
| model = model.module | |
| checkpoint = { | |
| "model": model.state_dict(), | |
| "optimizer": optimizer.state_dict() if optimizer is not None else None, | |
| "scheduler": scheduler.state_dict() if scheduler is not None else None, | |
| "grad_scaler": scaler.state_dict() if scaler is not None else None, | |
| "sampler": sampler.state_dict() if sampler is not None else None, | |
| } | |
| if model_avg is not None: | |
| checkpoint["model_avg"] = model_avg.to(torch.float32).state_dict() | |
| if model_ema is not None: | |
| checkpoint["model_ema"] = model_ema.to(torch.float32).state_dict() | |
| if params: | |
| for k, v in params.items(): | |
| assert k not in checkpoint | |
| checkpoint[k] = v | |
| torch.save(checkpoint, filename) | |
| def load_checkpoint( | |
| filename: Path, | |
| model: Optional[nn.Module] = None, | |
| model_avg: Optional[nn.Module] = None, | |
| model_ema: Optional[nn.Module] = None, | |
| strict: bool = False, | |
| ) -> Dict[str, Any]: | |
| logging.info(f"Loading checkpoint from {filename}") | |
| checkpoint = torch.load(filename, map_location="cpu", weights_only=False) | |
| if model is not None: | |
| if next(iter(checkpoint["model"])).startswith("module."): | |
| logging.info("Loading checkpoint saved by DDP") | |
| dst_state_dict = model.state_dict() | |
| src_state_dict = checkpoint["model"] | |
| for key in dst_state_dict.keys(): | |
| src_key = "{}.{}".format("module", key) | |
| dst_state_dict[key] = src_state_dict.pop(src_key) | |
| assert len(src_state_dict) == 0 | |
| model.load_state_dict(dst_state_dict, strict=strict) | |
| else: | |
| logging.info("Loading checkpoint") | |
| model.load_state_dict(checkpoint["model"], strict=strict) | |
| checkpoint.pop("model") | |
| if model_avg is not None and "model_avg" in checkpoint: | |
| logging.info("Loading averaged model") | |
| model_avg.load_state_dict(checkpoint["model_avg"], strict=strict) | |
| checkpoint.pop("model_avg") | |
| if model_ema is not None and "model_ema" in checkpoint: | |
| logging.info("Loading ema model") | |
| model_ema.load_state_dict(checkpoint["model_ema"], strict=strict) | |
| checkpoint.pop("model_ema") | |
| return checkpoint | |
| def load_checkpoint_extend_vocab_size( | |
| filename: Path, extend_size: int, model: nn.Module, strict: bool = True | |
| ) -> Dict[str, Any]: | |
| logging.info(f"Loading checkpoint from {filename}") | |
| checkpoint = torch.load(filename, map_location="cpu", weights_only=False) | |
| if model is not None: | |
| if next(iter(checkpoint["model"])).startswith("module."): | |
| logging.info("Loading checkpoint saved by DDP") | |
| dst_state_dict = model.state_dict() | |
| src_state_dict = checkpoint["model"] | |
| for key in dst_state_dict.keys(): | |
| src_key = "{}.{}".format("module", key) | |
| dst_state_dict[key] = src_state_dict.pop(src_key) | |
| assert len(src_state_dict) == 0 | |
| else: | |
| logging.info("Loading checkpoint") | |
| dst_state_dict = checkpoint["model"] | |
| dst_state_dict["spk_embed.weight"] = model.state_dict()["spk_embed.weight"] | |
| embed_weight = model.state_dict()["embed.weight"] | |
| embed_weight[:-extend_size, :] = dst_state_dict["embed.weight"] | |
| dst_state_dict["embed.weight"] = embed_weight | |
| model.load_state_dict(dst_state_dict, strict=strict) | |
| def load_checkpoint_copy_proj_three_channel_alter( | |
| filename: Path, | |
| in_proj_key: str, | |
| out_proj_key: str, | |
| dim: int, | |
| model: nn.Module, | |
| ) -> Dict[str, Any]: | |
| logging.info(f"Loading checkpoint from {filename}") | |
| checkpoint = torch.load(filename, map_location="cpu", weights_only=False) | |
| if model is not None: | |
| if next(iter(checkpoint["model"])).startswith("module."): | |
| logging.info("Loading checkpoint saved by DDP") | |
| dst_state_dict = dict() | |
| src_state_dict = checkpoint["model"] | |
| for key in src_state_dict.keys(): | |
| dst_state_dict[key.lstrip("module.")] = src_state_dict.pop(key) | |
| assert len(src_state_dict) == 0 | |
| else: | |
| logging.info("Loading checkpoint") | |
| dst_state_dict = checkpoint["model"] | |
| keys = list(dst_state_dict.keys()) | |
| for key in keys: | |
| if in_proj_key in key: | |
| if "weight" in key: | |
| weight = dst_state_dict.pop(key) | |
| dst_state_dict[key.replace("weight", "0.weight")] = torch.cat( | |
| [ | |
| weight[:, :dim] / 2, | |
| weight[:, :dim] / 2, | |
| weight[:, dim : dim * 2], | |
| weight[:, dim * 2 :] / 2, | |
| weight[:, dim * 2 :] / 2, | |
| ], | |
| dim=-1, | |
| ) | |
| dst_state_dict[key.replace("weight", "1.weight")] = weight | |
| if "bias" in key: | |
| bias = dst_state_dict.pop(key) | |
| dst_state_dict[key.replace("bias", "0.bias")] = bias | |
| dst_state_dict[key.replace("bias", "1.bias")] = bias | |
| if out_proj_key in key: | |
| if "weight" in key: | |
| weight = dst_state_dict.pop(key) | |
| dst_state_dict[key.replace("weight", "0.weight")] = torch.cat( | |
| [weight, weight], dim=0 | |
| ) | |
| dst_state_dict[key.replace("weight", "1.weight")] = weight | |
| elif "bias" in key: | |
| bias = dst_state_dict.pop(key) | |
| dst_state_dict[key.replace("bias", "0.bias")] = torch.cat( | |
| [bias, bias], dim=0 | |
| ) | |
| dst_state_dict[key.replace("bias", "1.bias")] = bias | |
| model.load_state_dict(dst_state_dict, strict=True) | |
| def find_checkpoints(out_dir: Path, iteration: int = 0) -> List[str]: | |
| """Find all available checkpoints in a directory. | |
| The checkpoint filenames have the form: `checkpoint-xxx.pt` | |
| where xxx is a numerical value. | |
| Assume you have the following checkpoints in the folder `foo`: | |
| - checkpoint-1.pt | |
| - checkpoint-20.pt | |
| - checkpoint-300.pt | |
| - checkpoint-4000.pt | |
| Case 1 (Return all checkpoints):: | |
| find_checkpoints(out_dir='foo') | |
| Case 2 (Return checkpoints newer than checkpoint-20.pt, i.e., | |
| checkpoint-4000.pt, checkpoint-300.pt, and checkpoint-20.pt) | |
| find_checkpoints(out_dir='foo', iteration=20) | |
| Case 3 (Return checkpoints older than checkpoint-20.pt, i.e., | |
| checkpoint-20.pt, checkpoint-1.pt):: | |
| find_checkpoints(out_dir='foo', iteration=-20) | |
| Args: | |
| out_dir: | |
| The directory where to search for checkpoints. | |
| iteration: | |
| If it is 0, return all available checkpoints. | |
| If it is positive, return the checkpoints whose iteration number is | |
| greater than or equal to `iteration`. | |
| If it is negative, return the checkpoints whose iteration number is | |
| less than or equal to `-iteration`. | |
| Returns: | |
| Return a list of checkpoint filenames, sorted in descending | |
| order by the numerical value in the filename. | |
| """ | |
| checkpoints = list(glob.glob(f"{out_dir}/checkpoint-[0-9]*.pt")) | |
| pattern = re.compile(r"checkpoint-([0-9]+).pt") | |
| iter_checkpoints = [] | |
| for c in checkpoints: | |
| result = pattern.search(c) | |
| if not result: | |
| logging.warn(f"Invalid checkpoint filename {c}") | |
| continue | |
| iter_checkpoints.append((int(result.group(1)), c)) | |
| # iter_checkpoints is a list of tuples. Each tuple contains | |
| # two elements: (iteration_number, checkpoint-iteration_number.pt) | |
| iter_checkpoints = sorted(iter_checkpoints, reverse=True, key=lambda x: x[0]) | |
| if iteration >= 0: | |
| ans = [ic[1] for ic in iter_checkpoints if ic[0] >= iteration] | |
| else: | |
| ans = [ic[1] for ic in iter_checkpoints if ic[0] <= -iteration] | |
| return ans | |
| def average_checkpoints_with_averaged_model( | |
| filename_start: str, | |
| filename_end: str, | |
| device: torch.device = torch.device("cpu"), | |
| ) -> Dict[str, torch.Tensor]: | |
| """Average model parameters over the range with given | |
| start model (excluded) and end model. | |
| Let start = batch_idx_train of model-start; | |
| end = batch_idx_train of model-end; | |
| interval = end - start. | |
| Then the average model over range from start (excluded) to end is | |
| (1) avg = (model_end * end - model_start * start) / interval. | |
| It can be written as | |
| (2) avg = model_end * weight_end + model_start * weight_start, | |
| where weight_end = end / interval, | |
| weight_start = -start / interval = 1 - weight_end. | |
| Since the terms `weight_end` and `weight_start` would be large | |
| if the model has been trained for lots of batches, which would cause | |
| overflow when multiplying the model parameters. | |
| To avoid this, we rewrite (2) as: | |
| (3) avg = (model_end + model_start * (weight_start / weight_end)) | |
| * weight_end | |
| The model index could be epoch number or iteration number. | |
| Args: | |
| filename_start: | |
| Checkpoint filename of the start model. We assume it | |
| is saved by :func:`save_checkpoint`. | |
| filename_end: | |
| Checkpoint filename of the end model. We assume it | |
| is saved by :func:`save_checkpoint`. | |
| device: | |
| Move checkpoints to this device before averaging. | |
| """ | |
| state_dict_start = torch.load( | |
| filename_start, map_location=device, weights_only=False | |
| ) | |
| state_dict_end = torch.load(filename_end, map_location=device, weights_only=False) | |
| average_period = state_dict_start["average_period"] | |
| batch_idx_train_start = state_dict_start["batch_idx_train"] | |
| batch_idx_train_start = (batch_idx_train_start // average_period) * average_period | |
| batch_idx_train_end = state_dict_end["batch_idx_train"] | |
| batch_idx_train_end = (batch_idx_train_end // average_period) * average_period | |
| interval = batch_idx_train_end - batch_idx_train_start | |
| assert interval > 0, interval | |
| weight_end = batch_idx_train_end / interval | |
| weight_start = 1 - weight_end | |
| model_end = state_dict_end["model_avg"] | |
| model_start = state_dict_start["model_avg"] | |
| avg = model_end | |
| # scale the weight to avoid overflow | |
| average_state_dict( | |
| state_dict_1=avg, | |
| state_dict_2=model_start, | |
| weight_1=1.0, | |
| weight_2=weight_start / weight_end, | |
| scaling_factor=weight_end, | |
| ) | |
| return avg | |
| def remove_checkpoints( | |
| out_dir: Path, | |
| topk: int, | |
| rank: int = 0, | |
| ): | |
| """Remove checkpoints from the given directory. | |
| We assume that checkpoint filename has the form `checkpoint-xxx.pt` | |
| where xxx is a number, representing the number of processed batches | |
| when saving that checkpoint. We sort checkpoints by filename and keep | |
| only the `topk` checkpoints with the highest `xxx`. | |
| Args: | |
| out_dir: | |
| The directory containing checkpoints to be removed. | |
| topk: | |
| Number of checkpoints to keep. | |
| rank: | |
| If using DDP for training, it is the rank of the current node. | |
| Use 0 if no DDP is used for training. | |
| """ | |
| assert topk >= 1, topk | |
| if rank != 0: | |
| return | |
| checkpoints = find_checkpoints(out_dir) | |
| if len(checkpoints) == 0: | |
| logging.warn(f"No checkpoints found in {out_dir}") | |
| return | |
| if len(checkpoints) <= topk: | |
| return | |
| to_remove = checkpoints[topk:] | |
| for c in to_remove: | |
| os.remove(c) | |
| def resume_checkpoint( | |
| params: AttributeDict, | |
| model: nn.Module, | |
| model_avg: nn.Module, | |
| model_ema: Optional[nn.Module] = None, | |
| ) -> Optional[Dict[str, Any]]: | |
| """Load checkpoint from file. | |
| If params.start_epoch is larger than 1, it will load the checkpoint from | |
| `params.start_epoch - 1`. | |
| Apart from loading state dict for `model` and `optimizer` it also updates | |
| `best_train_epoch`, `best_train_loss`, `best_valid_epoch`, | |
| and `best_valid_loss` in `params`. | |
| Args: | |
| params: | |
| The return value of :func:`get_params`. | |
| model: | |
| The training model. | |
| Returns: | |
| Return a dict containing previously saved training info. | |
| """ | |
| filename = params.exp_dir / f"epoch-{params.start_epoch - 1}.pt" | |
| assert filename.is_file(), f"{filename} does not exist!" | |
| saved_params = load_checkpoint( | |
| filename, | |
| model=model, | |
| model_avg=model_avg, | |
| model_ema=model_ema, | |
| strict=True, | |
| ) | |
| if params.start_epoch > 1: | |
| keys = [ | |
| "best_train_epoch", | |
| "best_valid_epoch", | |
| "batch_idx_train", | |
| "best_train_loss", | |
| "best_valid_loss", | |
| ] | |
| for k in keys: | |
| params[k] = saved_params[k] | |
| return saved_params | |
| def average_state_dict( | |
| state_dict_1: Dict[str, torch.Tensor], | |
| state_dict_2: Dict[str, torch.Tensor], | |
| weight_1: float, | |
| weight_2: float, | |
| scaling_factor: float = 1.0, | |
| ) -> Dict[str, torch.Tensor]: | |
| """Average two state_dict with given weights: | |
| state_dict_1 = (state_dict_1 * weight_1 + state_dict_2 * weight_2) | |
| * scaling_factor | |
| It is an in-place operation on state_dict_1 itself. | |
| """ | |
| # Identify shared parameters. Two parameters are said to be shared | |
| # if they have the same data_ptr | |
| uniqued: Dict[int, str] = dict() | |
| for k, v in state_dict_1.items(): | |
| v_data_ptr = v.data_ptr() | |
| if v_data_ptr in uniqued: | |
| continue | |
| uniqued[v_data_ptr] = k | |
| uniqued_names = list(uniqued.values()) | |
| for k in uniqued_names: | |
| v = state_dict_1[k] | |
| if torch.is_floating_point(v): | |
| v *= weight_1 | |
| v += state_dict_2[k].to(device=state_dict_1[k].device) * weight_2 | |
| v *= scaling_factor | |
| def update_averaged_model( | |
| params: Dict[str, torch.Tensor], | |
| model_cur: Union[nn.Module, DDP], | |
| model_avg: nn.Module, | |
| ) -> None: | |
| """Update the averaged model: | |
| model_avg = model_cur * (average_period / batch_idx_train) | |
| + model_avg * ((batch_idx_train - average_period) / batch_idx_train) | |
| Args: | |
| params: | |
| User defined parameters, e.g., epoch, loss. | |
| model_cur: | |
| The current model. | |
| model_avg: | |
| The averaged model to be updated. | |
| """ | |
| weight_cur = params.average_period / params.batch_idx_train | |
| weight_avg = 1 - weight_cur | |
| if isinstance(model_cur, DDP): | |
| model_cur = model_cur.module | |
| cur = model_cur.state_dict() | |
| avg = model_avg.state_dict() | |
| average_state_dict( | |
| state_dict_1=avg, | |
| state_dict_2=cur, | |
| weight_1=weight_avg, | |
| weight_2=weight_cur, | |
| ) | |
| def save_checkpoint_with_global_batch_idx( | |
| out_dir: Path, | |
| global_batch_idx: int, | |
| model: Union[nn.Module, DDP], | |
| model_avg: Optional[nn.Module] = None, | |
| params: Optional[Dict[str, Any]] = None, | |
| optimizer: Optional[Optimizer] = None, | |
| scheduler: Optional[LRSchedulerType] = None, | |
| scaler: Optional[GradScaler] = None, | |
| sampler: Optional[CutSampler] = None, | |
| rank: int = 0, | |
| ): | |
| """Save training info after processing given number of batches. | |
| Args: | |
| out_dir: | |
| The directory to save the checkpoint. | |
| global_batch_idx: | |
| The number of batches processed so far from the very start of the | |
| training. The saved checkpoint will have the following filename: | |
| f'out_dir / checkpoint-{global_batch_idx}.pt' | |
| model: | |
| The neural network model whose `state_dict` will be saved in the | |
| checkpoint. | |
| model_avg: | |
| The stored model averaged from the start of training. | |
| params: | |
| A dict of training configurations to be saved. | |
| optimizer: | |
| The optimizer used in the training. Its `state_dict` will be saved. | |
| scheduler: | |
| The learning rate scheduler used in the training. Its `state_dict` will | |
| be saved. | |
| scaler: | |
| The scaler used for mix precision training. Its `state_dict` will | |
| be saved. | |
| sampler: | |
| The sampler used in the training dataset. | |
| rank: | |
| The rank ID used in DDP training of the current node. Set it to 0 | |
| if DDP is not used. | |
| """ | |
| out_dir = Path(out_dir) | |
| out_dir.mkdir(parents=True, exist_ok=True) | |
| filename = out_dir / f"checkpoint-{global_batch_idx}.pt" | |
| save_checkpoint( | |
| filename=filename, | |
| model=model, | |
| model_avg=model_avg, | |
| params=params, | |
| optimizer=optimizer, | |
| scheduler=scheduler, | |
| scaler=scaler, | |
| sampler=sampler, | |
| rank=rank, | |
| ) | |