Spaces:
Sleeping
Sleeping
| #!/usr/bin/env python3 | |
| # Copyright 2025 Xiaomi Corp. (authors: Han Zhu, | |
| # Wei Kang) | |
| # | |
| # See ../../../../LICENSE for clarification regarding multiple authors | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ | |
| Calculate WER with Hubert models. | |
| """ | |
| import argparse | |
| import os | |
| import re | |
| from pathlib import Path | |
| import librosa | |
| import numpy as np | |
| import soundfile as sf | |
| import torch | |
| from jiwer import compute_measures | |
| from tqdm import tqdm | |
| from transformers import pipeline | |
| def get_parser(): | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--wav-path", type=str, help="path of the speech directory") | |
| parser.add_argument( | |
| "--decode-path", | |
| type=str, | |
| default=None, | |
| help="path of the output file of WER information", | |
| ) | |
| parser.add_argument( | |
| "--model-path", | |
| type=str, | |
| default=None, | |
| help="path of the local hubert model, e.g., " | |
| "model/huggingface/hubert-large-ls960-ft", | |
| ) | |
| parser.add_argument( | |
| "--test-list", | |
| type=str, | |
| default="test.tsv", | |
| help="path of the transcript tsv file, where the first column " | |
| "is the wav name and the last column is the transcript", | |
| ) | |
| parser.add_argument( | |
| "--batch-size", type=int, default=16, help="decoding batch size" | |
| ) | |
| return parser | |
| def post_process(text: str): | |
| text = text.replace("‘", "'") | |
| text = text.replace("’", "'") | |
| text = re.sub(r"[^a-zA-Z0-9']", " ", text.lower()) | |
| text = re.sub(r"\s+", " ", text) | |
| text = text.strip() | |
| return text | |
| def process_one(hypo, truth): | |
| truth = post_process(truth) | |
| hypo = post_process(hypo) | |
| measures = compute_measures(truth, hypo) | |
| word_num = len(truth.split(" ")) | |
| wer = measures["wer"] | |
| subs = measures["substitutions"] | |
| dele = measures["deletions"] | |
| inse = measures["insertions"] | |
| return (truth, hypo, wer, subs, dele, inse, word_num) | |
| class SpeechEvalDataset(torch.utils.data.Dataset): | |
| def __init__(self, wav_path: str, test_list: str): | |
| super().__init__() | |
| self.wav_name = [] | |
| self.wav_paths = [] | |
| self.transcripts = [] | |
| with Path(test_list).open("r", encoding="utf8") as f: | |
| meta = [item.split("\t") for item in f.read().rstrip().split("\n")] | |
| for item in meta: | |
| self.wav_name.append(item[0]) | |
| self.wav_paths.append(Path(wav_path, item[0] + ".wav")) | |
| self.transcripts.append(item[-1]) | |
| def __len__(self): | |
| return len(self.wav_paths) | |
| def __getitem__(self, index: int): | |
| wav, sampling_rate = sf.read(self.wav_paths[index]) | |
| item = { | |
| "array": librosa.resample(wav, orig_sr=sampling_rate, target_sr=16000), | |
| "sampling_rate": 16000, | |
| "reference": self.transcripts[index], | |
| "wav_name": self.wav_name[index], | |
| } | |
| return item | |
| def main(test_list, wav_path, model_path, decode_path, batch_size, device): | |
| if model_path is not None: | |
| pipe = pipeline( | |
| "automatic-speech-recognition", | |
| model=model_path, | |
| device=device, | |
| tokenizer=model_path, | |
| ) | |
| else: | |
| pipe = pipeline( | |
| "automatic-speech-recognition", | |
| model="facebook/hubert-large-ls960-ft", | |
| device=device, | |
| ) | |
| dataset = SpeechEvalDataset(wav_path, test_list) | |
| bar = tqdm( | |
| pipe( | |
| dataset, | |
| generate_kwargs={"language": "english", "task": "transcribe"}, | |
| batch_size=batch_size, | |
| ), | |
| total=len(dataset), | |
| ) | |
| wers = [] | |
| inses = [] | |
| deles = [] | |
| subses = [] | |
| word_nums = 0 | |
| if decode_path: | |
| decode_dir = os.path.dirname(decode_path) | |
| if not os.path.exists(decode_dir): | |
| os.makedirs(decode_dir) | |
| fout = open(decode_path, "w") | |
| for out in bar: | |
| wav_name = out["wav_name"][0] | |
| transcription = post_process(out["text"].strip()) | |
| text_ref = post_process(out["reference"][0].strip()) | |
| truth, hypo, wer, subs, dele, inse, word_num = process_one( | |
| transcription, text_ref | |
| ) | |
| if decode_path: | |
| fout.write(f"{wav_name}\t{wer}\t{truth}\t{hypo}\t{inse}\t{dele}\t{subs}\n") | |
| wers.append(float(wer)) | |
| inses.append(float(inse)) | |
| deles.append(float(dele)) | |
| subses.append(float(subs)) | |
| word_nums += word_num | |
| wer = round((np.sum(subses) + np.sum(deles) + np.sum(inses)) / word_nums * 100, 3) | |
| subs = round(np.mean(subses) * 100, 3) | |
| dele = round(np.mean(deles) * 100, 3) | |
| inse = round(np.mean(inses) * 100, 3) | |
| print(f"WER: {wer}%\n") | |
| if decode_path: | |
| fout.write(f"WER: {wer}%\n") | |
| fout.flush() | |
| if __name__ == "__main__": | |
| parser = get_parser() | |
| args = parser.parse_args() | |
| if torch.cuda.is_available(): | |
| device = torch.device("cuda", 0) | |
| else: | |
| device = torch.device("cpu") | |
| main( | |
| args.test_list, | |
| args.wav_path, | |
| args.model_path, | |
| args.decode_path, | |
| args.batch_size, | |
| device, | |
| ) | |