Spaces:
Sleeping
Sleeping
| import spaces | |
| import os | |
| from huggingface_hub import login | |
| import gradio as gr | |
| from cached_path import cached_path | |
| import tempfile | |
| import numpy as np | |
| from vinorm import TTSnorm | |
| from infer_zipvoice import model, tokenizer, feature_extractor, device, generate_sentence, vocoder | |
| from utils import preprocess_ref_audio_text, save_spectrogram, chunk_text | |
| # Retrieve token from secrets | |
| hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN") | |
| # Log in to Hugging Face | |
| if hf_token: | |
| login(token=hf_token) | |
| def post_process(text): | |
| text = " " + text + " " | |
| text = text.replace(" . . ", " . ") | |
| text = " " + text + " " | |
| text = text.replace(" .. ", " . ") | |
| text = " " + text + " " | |
| text = text.replace(" , , ", " , ") | |
| text = " " + text + " " | |
| text = text.replace(" ,, ", " , ") | |
| text = " " + text + " " | |
| text = text.replace('"', "") | |
| return " ".join(text.split()) | |
| def infer_tts(ref_audio_orig: str, gen_text: str, speed: float = 1.0, request: gr.Request = None): | |
| if not ref_audio_orig: | |
| raise gr.Error("Please upload a sample audio file.") | |
| if not gen_text.strip(): | |
| raise gr.Error("Please enter the text content to generate voice.") | |
| if len(gen_text.split()) > 1000: | |
| raise gr.Error("Please enter text content with less than 1000 words.") | |
| try: | |
| gen_texts = chunk_text(gen_text) | |
| final_wave_total = None | |
| final_sample_rate = 24000 | |
| ref_audio, ref_text = "", "" | |
| for i, gen_text in enumerate(gen_texts): | |
| if i == 0: | |
| ref_audio, ref_text = preprocess_ref_audio_text(ref_audio_orig, "") | |
| final_wave = generate_sentence( | |
| ref_text.lower(), | |
| ref_audio, | |
| post_process(TTSnorm(gen_text)).lower(), | |
| model=model, | |
| vocoder=vocoder, | |
| tokenizer=tokenizer, | |
| feature_extractor=feature_extractor, | |
| device=device, | |
| speed=speed | |
| ).detach().numpy()[0] | |
| if i == 0: | |
| final_wave_total = final_wave | |
| else: | |
| final_wave_total = np.concatenate((final_wave_total, final_wave, np.zeros(12000, dtype=int)), axis=0) | |
| with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram: | |
| spectrogram_path = tmp_spectrogram.name | |
| save_spectrogram(final_wave_total, spectrogram_path) | |
| return (final_sample_rate, final_wave_total), spectrogram_path | |
| except Exception as e: | |
| raise gr.Error(f"Error generating voice: {e}") | |
| # Gradio UI | |
| with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| gr.Markdown(""" | |
| # π€ ZipVoice: Zero-shot Vietnamese Text-to-Speech Synthesis using Flow Matching with only 123M parameters. | |
| # The model was trained with approximately 150 hours of data on a RTX 3090 GPU. | |
| Enter text and upload a sample voice to generate natural speech. | |
| """) | |
| with gr.Row(): | |
| ref_audio = gr.Audio(label="π Sample Voice", type="filepath") | |
| gen_text = gr.Textbox(label="π Text", placeholder="Enter the text to generate voice...", lines=3) | |
| speed = gr.Slider(0.3, 2.0, value=1.0, step=0.1, label="β‘ Speed") | |
| btn_synthesize = gr.Button("π₯ Generate Voice") | |
| with gr.Row(): | |
| output_audio = gr.Audio(label="π§ Generated Audio", type="numpy") | |
| output_spectrogram = gr.Image(label="π Spectrogram") | |
| model_limitations = gr.Textbox( | |
| value="""1. This model may not perform well with numerical characters, dates, special characters, etc. | |
| 2. The rhythm of some generated audios may be inconsistent or choppy. | |
| 3. Default, reference audio text uses the pho-whisper-medium model, which may not always accurately recognize Vietnamese, resulting in poor voice synthesis quality. | |
| 4. Inference with overly long paragraphs may produce poor results. | |
| 5. This demo uses a for loop to generate audio for each sentence sequentially in long paragraphs, so the speed may be slow""", | |
| label="β Model Limitations", | |
| lines=5, | |
| interactive=False | |
| ) | |
| btn_synthesize.click(infer_tts, inputs=[ref_audio, gen_text, speed], outputs=[output_audio, output_spectrogram]) | |
| # Run Gradio with share=True to get a gradio.live link | |
| demo.queue().launch() |