Spaces:
Runtime error
Runtime error
| import torch | |
| from torch.utils import data | |
| import numpy as np | |
| from os.path import join as pjoin | |
| import random | |
| import codecs as cs | |
| from tqdm import tqdm | |
| class VQMotionDataset(data.Dataset): | |
| def __init__(self, dataset_name, window_size = 64, unit_length = 4): | |
| self.window_size = window_size | |
| self.unit_length = unit_length | |
| self.dataset_name = dataset_name | |
| if dataset_name == 't2m': | |
| self.data_root = './dataset/HumanML3D' | |
| self.motion_dir = pjoin(self.data_root, 'new_joint_vecs') | |
| self.text_dir = pjoin(self.data_root, 'texts') | |
| self.joints_num = 22 | |
| self.max_motion_length = 196 | |
| self.meta_dir = 'checkpoints/t2m/VQVAEV3_CB1024_CMT_H1024_NRES3/meta' | |
| elif dataset_name == 'kit': | |
| self.data_root = './dataset/KIT-ML' | |
| self.motion_dir = pjoin(self.data_root, 'new_joint_vecs') | |
| self.text_dir = pjoin(self.data_root, 'texts') | |
| self.joints_num = 21 | |
| self.max_motion_length = 196 | |
| self.meta_dir = 'checkpoints/kit/VQVAEV3_CB1024_CMT_H1024_NRES3/meta' | |
| joints_num = self.joints_num | |
| mean = np.load(pjoin(self.meta_dir, 'mean.npy')) | |
| std = np.load(pjoin(self.meta_dir, 'std.npy')) | |
| split_file = pjoin(self.data_root, 'train.txt') | |
| self.data = [] | |
| self.lengths = [] | |
| id_list = [] | |
| with cs.open(split_file, 'r') as f: | |
| for line in f.readlines(): | |
| id_list.append(line.strip()) | |
| for name in tqdm(id_list): | |
| try: | |
| motion = np.load(pjoin(self.motion_dir, name + '.npy')) | |
| if motion.shape[0] < self.window_size: | |
| continue | |
| self.lengths.append(motion.shape[0] - self.window_size) | |
| self.data.append(motion) | |
| except: | |
| # Some motion may not exist in KIT dataset | |
| pass | |
| self.mean = mean | |
| self.std = std | |
| print("Total number of motions {}".format(len(self.data))) | |
| def inv_transform(self, data): | |
| return data * self.std + self.mean | |
| def compute_sampling_prob(self) : | |
| prob = np.array(self.lengths, dtype=np.float32) | |
| prob /= np.sum(prob) | |
| return prob | |
| def __len__(self): | |
| return len(self.data) | |
| def __getitem__(self, item): | |
| motion = self.data[item] | |
| idx = random.randint(0, len(motion) - self.window_size) | |
| motion = motion[idx:idx+self.window_size] | |
| "Z Normalization" | |
| motion = (motion - self.mean) / self.std | |
| return motion | |
| def DATALoader(dataset_name, | |
| batch_size, | |
| num_workers = 8, | |
| window_size = 64, | |
| unit_length = 4): | |
| trainSet = VQMotionDataset(dataset_name, window_size=window_size, unit_length=unit_length) | |
| prob = trainSet.compute_sampling_prob() | |
| sampler = torch.utils.data.WeightedRandomSampler(prob, num_samples = len(trainSet) * 1000, replacement=True) | |
| train_loader = torch.utils.data.DataLoader(trainSet, | |
| batch_size, | |
| shuffle=True, | |
| #sampler=sampler, | |
| num_workers=num_workers, | |
| #collate_fn=collate_fn, | |
| drop_last = True) | |
| return train_loader | |
| def cycle(iterable): | |
| while True: | |
| for x in iterable: | |
| yield x | |