Spaces:
Runtime error
Runtime error
| import torch | |
| from torch.utils import data | |
| import numpy as np | |
| from os.path import join as pjoin | |
| import random | |
| import codecs as cs | |
| from tqdm import tqdm | |
| import utils.paramUtil as paramUtil | |
| from torch.utils.data._utils.collate import default_collate | |
| def collate_fn(batch): | |
| batch.sort(key=lambda x: x[3], reverse=True) | |
| return default_collate(batch) | |
| '''For use of training text-2-motion generative model''' | |
| class Text2MotionDataset(data.Dataset): | |
| def __init__(self, dataset_name, feat_bias = 5, unit_length = 4, codebook_size = 1024, tokenizer_name=None): | |
| self.max_length = 64 | |
| self.pointer = 0 | |
| self.dataset_name = dataset_name | |
| self.unit_length = unit_length | |
| # self.mot_start_idx = codebook_size | |
| self.mot_end_idx = codebook_size | |
| self.mot_pad_idx = codebook_size + 1 | |
| if dataset_name == 't2m': | |
| self.data_root = './dataset/HumanML3D' | |
| self.motion_dir = pjoin(self.data_root, 'new_joint_vecs') | |
| self.text_dir = pjoin(self.data_root, 'texts') | |
| self.joints_num = 22 | |
| radius = 4 | |
| fps = 20 | |
| self.max_motion_length = 26 if unit_length == 8 else 51 | |
| dim_pose = 263 | |
| kinematic_chain = paramUtil.t2m_kinematic_chain | |
| elif dataset_name == 'kit': | |
| self.data_root = './dataset/KIT-ML' | |
| self.motion_dir = pjoin(self.data_root, 'new_joint_vecs') | |
| self.text_dir = pjoin(self.data_root, 'texts') | |
| self.joints_num = 21 | |
| radius = 240 * 8 | |
| fps = 12.5 | |
| dim_pose = 251 | |
| self.max_motion_length = 26 if unit_length == 8 else 51 | |
| kinematic_chain = paramUtil.kit_kinematic_chain | |
| split_file = pjoin(self.data_root, 'train.txt') | |
| id_list = [] | |
| with cs.open(split_file, 'r') as f: | |
| for line in f.readlines(): | |
| id_list.append(line.strip()) | |
| new_name_list = [] | |
| data_dict = {} | |
| for name in tqdm(id_list): | |
| try: | |
| m_token_list = np.load(pjoin(self.data_root, tokenizer_name, '%s.npy'%name)) | |
| # Read text | |
| with cs.open(pjoin(self.text_dir, name + '.txt')) as f: | |
| text_data = [] | |
| flag = False | |
| lines = f.readlines() | |
| for line in lines: | |
| try: | |
| text_dict = {} | |
| line_split = line.strip().split('#') | |
| caption = line_split[0] | |
| t_tokens = line_split[1].split(' ') | |
| f_tag = float(line_split[2]) | |
| to_tag = float(line_split[3]) | |
| f_tag = 0.0 if np.isnan(f_tag) else f_tag | |
| to_tag = 0.0 if np.isnan(to_tag) else to_tag | |
| text_dict['caption'] = caption | |
| text_dict['tokens'] = t_tokens | |
| if f_tag == 0.0 and to_tag == 0.0: | |
| flag = True | |
| text_data.append(text_dict) | |
| else: | |
| m_token_list_new = [tokens[int(f_tag*fps/unit_length) : int(to_tag*fps/unit_length)] for tokens in m_token_list if int(f_tag*fps/unit_length) < int(to_tag*fps/unit_length)] | |
| if len(m_token_list_new) == 0: | |
| continue | |
| new_name = '%s_%f_%f'%(name, f_tag, to_tag) | |
| data_dict[new_name] = {'m_token_list': m_token_list_new, | |
| 'text':[text_dict]} | |
| new_name_list.append(new_name) | |
| except: | |
| pass | |
| if flag: | |
| data_dict[name] = {'m_token_list': m_token_list, | |
| 'text':text_data} | |
| new_name_list.append(name) | |
| except: | |
| pass | |
| self.data_dict = data_dict | |
| self.name_list = new_name_list | |
| def __len__(self): | |
| return len(self.data_dict) | |
| def __getitem__(self, item): | |
| data = self.data_dict[self.name_list[item]] | |
| m_token_list, text_list = data['m_token_list'], data['text'] | |
| m_tokens = random.choice(m_token_list) | |
| text_data = random.choice(text_list) | |
| caption= text_data['caption'] | |
| coin = np.random.choice([False, False, True]) | |
| # print(len(m_tokens)) | |
| if coin: | |
| # drop one token at the head or tail | |
| coin2 = np.random.choice([True, False]) | |
| if coin2: | |
| m_tokens = m_tokens[:-1] | |
| else: | |
| m_tokens = m_tokens[1:] | |
| m_tokens_len = m_tokens.shape[0] | |
| if m_tokens_len+1 < self.max_motion_length: | |
| m_tokens = np.concatenate([m_tokens, np.ones((1), dtype=int) * self.mot_end_idx, np.ones((self.max_motion_length-1-m_tokens_len), dtype=int) * self.mot_pad_idx], axis=0) | |
| else: | |
| m_tokens = np.concatenate([m_tokens, np.ones((1), dtype=int) * self.mot_end_idx], axis=0) | |
| return caption, m_tokens.reshape(-1), m_tokens_len | |
| def DATALoader(dataset_name, | |
| batch_size, codebook_size, tokenizer_name, unit_length=4, | |
| num_workers = 8) : | |
| train_loader = torch.utils.data.DataLoader(Text2MotionDataset(dataset_name, codebook_size = codebook_size, tokenizer_name = tokenizer_name, unit_length=unit_length), | |
| batch_size, | |
| shuffle=True, | |
| num_workers=num_workers, | |
| #collate_fn=collate_fn, | |
| drop_last = True) | |
| return train_loader | |
| def cycle(iterable): | |
| while True: | |
| for x in iterable: | |
| yield x | |