Spaces:
Runtime error
Runtime error
| import os | |
| import torch | |
| import numpy as np | |
| from torch.utils.tensorboard import SummaryWriter | |
| from os.path import join as pjoin | |
| from torch.distributions import Categorical | |
| import json | |
| import clip | |
| import options.option_transformer as option_trans | |
| import models.vqvae as vqvae | |
| import utils.utils_model as utils_model | |
| import utils.eval_trans as eval_trans | |
| from dataset import dataset_TM_train | |
| from dataset import dataset_TM_eval | |
| from dataset import dataset_tokenize | |
| import models.t2m_trans as trans | |
| from options.get_eval_option import get_opt | |
| from models.evaluator_wrapper import EvaluatorModelWrapper | |
| import warnings | |
| warnings.filterwarnings('ignore') | |
| ##### ---- Exp dirs ---- ##### | |
| args = option_trans.get_args_parser() | |
| torch.manual_seed(args.seed) | |
| args.out_dir = os.path.join(args.out_dir, f'{args.exp_name}') | |
| args.vq_dir= os.path.join("./dataset/KIT-ML" if args.dataname == 'kit' else "./dataset/HumanML3D", f'{args.vq_name}') | |
| os.makedirs(args.out_dir, exist_ok = True) | |
| os.makedirs(args.vq_dir, exist_ok = True) | |
| ##### ---- Logger ---- ##### | |
| logger = utils_model.get_logger(args.out_dir) | |
| writer = SummaryWriter(args.out_dir) | |
| logger.info(json.dumps(vars(args), indent=4, sort_keys=True)) | |
| ##### ---- Dataloader ---- ##### | |
| train_loader_token = dataset_tokenize.DATALoader(args.dataname, 1, unit_length=2**args.down_t) | |
| from utils.word_vectorizer import WordVectorizer | |
| w_vectorizer = WordVectorizer('./glove', 'our_vab') | |
| val_loader = dataset_TM_eval.DATALoader(args.dataname, False, 32, w_vectorizer) | |
| dataset_opt_path = 'checkpoints/kit/Comp_v6_KLD005/opt.txt' if args.dataname == 'kit' else 'checkpoints/t2m/Comp_v6_KLD005/opt.txt' | |
| wrapper_opt = get_opt(dataset_opt_path, torch.device('cuda')) | |
| eval_wrapper = EvaluatorModelWrapper(wrapper_opt) | |
| ##### ---- Network ---- ##### | |
| clip_model, clip_preprocess = clip.load("ViT-B/32", device=torch.device('cuda'), jit=False, download_root='/apdcephfs_cq2/share_1290939/maelyszhang/.cache/clip') # Must set jit=False for training | |
| clip.model.convert_weights(clip_model) # Actually this line is unnecessary since clip by default already on float16 | |
| clip_model.eval() | |
| for p in clip_model.parameters(): | |
| p.requires_grad = False | |
| net = vqvae.HumanVQVAE(args, ## use args to define different parameters in different quantizers | |
| args.nb_code, | |
| args.code_dim, | |
| args.output_emb_width, | |
| args.down_t, | |
| args.stride_t, | |
| args.width, | |
| args.depth, | |
| args.dilation_growth_rate) | |
| trans_encoder = trans.Text2Motion_Transformer(num_vq=args.nb_code, | |
| embed_dim=args.embed_dim_gpt, | |
| clip_dim=args.clip_dim, | |
| block_size=args.block_size, | |
| num_layers=args.num_layers, | |
| n_head=args.n_head_gpt, | |
| drop_out_rate=args.drop_out_rate, | |
| fc_rate=args.ff_rate) | |
| print ('loading checkpoint from {}'.format(args.resume_pth)) | |
| ckpt = torch.load(args.resume_pth, map_location='cpu') | |
| net.load_state_dict(ckpt['net'], strict=True) | |
| net.eval() | |
| net.cuda() | |
| if args.resume_trans is not None: | |
| print ('loading transformer checkpoint from {}'.format(args.resume_trans)) | |
| ckpt = torch.load(args.resume_trans, map_location='cpu') | |
| trans_encoder.load_state_dict(ckpt['trans'], strict=True) | |
| trans_encoder.train() | |
| trans_encoder.cuda() | |
| ##### ---- Optimizer & Scheduler ---- ##### | |
| optimizer = utils_model.initial_optim(args.decay_option, args.lr, args.weight_decay, trans_encoder, args.optimizer) | |
| scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.lr_scheduler, gamma=args.gamma) | |
| ##### ---- Optimization goals ---- ##### | |
| loss_ce = torch.nn.CrossEntropyLoss() | |
| nb_iter, avg_loss_cls, avg_acc = 0, 0., 0. | |
| right_num = 0 | |
| nb_sample_train = 0 | |
| ##### ---- get code ---- ##### | |
| for batch in train_loader_token: | |
| pose, name = batch | |
| bs, seq = pose.shape[0], pose.shape[1] | |
| pose = pose.cuda().float() # bs, nb_joints, joints_dim, seq_len | |
| target = net.encode(pose) | |
| target = target.cpu().numpy() | |
| np.save(pjoin(args.vq_dir, name[0] +'.npy'), target) | |
| train_loader = dataset_TM_train.DATALoader(args.dataname, args.batch_size, args.nb_code, args.vq_name, unit_length=2**args.down_t) | |
| train_loader_iter = dataset_TM_train.cycle(train_loader) | |
| ##### ---- Training ---- ##### | |
| best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, writer, logger = eval_trans.evaluation_transformer(args.out_dir, val_loader, net, trans_encoder, logger, writer, 0, best_fid=1000, best_iter=0, best_div=100, best_top1=0, best_top2=0, best_top3=0, best_matching=100, clip_model=clip_model, eval_wrapper=eval_wrapper) | |
| while nb_iter <= args.total_iter: | |
| batch = next(train_loader_iter) | |
| clip_text, m_tokens, m_tokens_len = batch | |
| m_tokens, m_tokens_len = m_tokens.cuda(), m_tokens_len.cuda() | |
| bs = m_tokens.shape[0] | |
| target = m_tokens # (bs, 26) | |
| target = target.cuda() | |
| text = clip.tokenize(clip_text, truncate=True).cuda() | |
| feat_clip_text = clip_model.encode_text(text).float() | |
| input_index = target[:,:-1] | |
| if args.pkeep == -1: | |
| proba = np.random.rand(1)[0] | |
| mask = torch.bernoulli(proba * torch.ones(input_index.shape, | |
| device=input_index.device)) | |
| else: | |
| mask = torch.bernoulli(args.pkeep * torch.ones(input_index.shape, | |
| device=input_index.device)) | |
| mask = mask.round().to(dtype=torch.int64) | |
| r_indices = torch.randint_like(input_index, args.nb_code) | |
| a_indices = mask*input_index+(1-mask)*r_indices | |
| cls_pred = trans_encoder(a_indices, feat_clip_text) | |
| cls_pred = cls_pred.contiguous() | |
| loss_cls = 0.0 | |
| for i in range(bs): | |
| # loss function (26), (26, 513) | |
| loss_cls += loss_ce(cls_pred[i][:m_tokens_len[i] + 1], target[i][:m_tokens_len[i] + 1]) / bs | |
| # Accuracy | |
| probs = torch.softmax(cls_pred[i][:m_tokens_len[i] + 1], dim=-1) | |
| if args.if_maxtest: | |
| _, cls_pred_index = torch.max(probs, dim=-1) | |
| else: | |
| dist = Categorical(probs) | |
| cls_pred_index = dist.sample() | |
| right_num += (cls_pred_index.flatten(0) == target[i][:m_tokens_len[i] + 1].flatten(0)).sum().item() | |
| ## global loss | |
| optimizer.zero_grad() | |
| loss_cls.backward() | |
| optimizer.step() | |
| scheduler.step() | |
| avg_loss_cls = avg_loss_cls + loss_cls.item() | |
| nb_sample_train = nb_sample_train + (m_tokens_len + 1).sum().item() | |
| nb_iter += 1 | |
| if nb_iter % args.print_iter == 0 : | |
| avg_loss_cls = avg_loss_cls / args.print_iter | |
| avg_acc = right_num * 100 / nb_sample_train | |
| writer.add_scalar('./Loss/train', avg_loss_cls, nb_iter) | |
| writer.add_scalar('./ACC/train', avg_acc, nb_iter) | |
| msg = f"Train. Iter {nb_iter} : Loss. {avg_loss_cls:.5f}, ACC. {avg_acc:.4f}" | |
| logger.info(msg) | |
| avg_loss_cls = 0. | |
| right_num = 0 | |
| nb_sample_train = 0 | |
| if nb_iter % args.eval_iter == 0: | |
| best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, writer, logger = eval_trans.evaluation_transformer(args.out_dir, val_loader, net, trans_encoder, logger, writer, nb_iter, best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, clip_model=clip_model, eval_wrapper=eval_wrapper) | |
| if nb_iter == args.total_iter: | |
| msg_final = f"Train. Iter {best_iter} : FID. {best_fid:.5f}, Diversity. {best_div:.4f}, TOP1. {best_top1:.4f}, TOP2. {best_top2:.4f}, TOP3. {best_top3:.4f}" | |
| logger.info(msg_final) | |
| break |