# 🏛️ CIDADÃO.AI - CONTEXTO GERAL DO PROJETO **⚠️ HEADER UNIVERSAL - NÃO REMOVER - Atualizado: Janeiro 2025** ## 🎯 VISÃO GERAL DO ECOSSISTEMA O **Cidadão.AI** é um ecossistema de **4 repositórios especializados** que trabalham em conjunto para democratizar a transparência pública brasileira através de IA avançada: ### 📦 REPOSITÓRIOS DO ECOSSISTEMA - **cidadao.ai-backend** → API + Sistema Multi-Agente + ML Pipeline - **cidadao.ai-frontend** → Interface Web + Internacionalização - **cidadao.ai-docs** → Hub de Documentação + Landing Page - **cidadao.ai-models** → Modelos IA + Pipeline MLOps (ESTE REPOSITÓRIO) ### 🤖 SISTEMA MULTI-AGENTE (17 Agentes) 1. **MasterAgent (Abaporu)** - Orquestração central com auto-reflexão 2. **InvestigatorAgent** - Detecção de anomalias em dados públicos 3. **AnalystAgent** - Análise de padrões e correlações 4. **ReporterAgent** - Geração inteligente de relatórios 5. **SecurityAuditorAgent** - Auditoria e compliance 6. **CommunicationAgent** - Comunicação inter-agentes 7. **CorruptionDetectorAgent** - Detecção de corrupção 8. **PredictiveAgent** - Análise preditiva 9. **VisualizationAgent** - Visualizações de dados 10. **BonifacioAgent** - Contratos públicos 11. **DandaraAgent** - Diversidade e inclusão 12. **MachadoAgent** - Processamento de linguagem natural 13. **SemanticRouter** - Roteamento inteligente 14. **ContextMemoryAgent** - Sistema de memória 15. **ETLExecutorAgent** - Processamento de dados 16. **ObserverAgent** - Monitoramento 17. **ValidatorAgent** - Validação de qualidade ### 🏗️ ARQUITETURA TÉCNICA - **Score Geral**: 9.3/10 (Classe Enterprise) - **Backend**: FastAPI + Python 3.11+ + PostgreSQL + Redis + ChromaDB - **Frontend**: Next.js 15 + React 19 + TypeScript + Tailwind CSS 4 - **Deploy**: Docker + Kubernetes + SSL + Monitoring - **IA**: LangChain + Transformers + OpenAI/Groq + Vector DBs ### 🛡️ SEGURANÇA E AUDITORIA - **Multi-layer security** com middleware especializado - **JWT + OAuth2 + API Key** authentication - **Audit trail** completo com severity levels - **Rate limiting** + **CORS** + **SSL termination** ### 🎯 MISSÃO E IMPACTO - **Democratizar** acesso a análises de dados públicos - **Detectar anomalias** e irregularidades automaticamente - **Empoderar cidadãos** com informação clara e auditável - **Fortalecer transparência** governamental via IA ética ### 📊 STATUS DO PROJETO - **Versão**: 1.0.0 (Production-Ready) - **Score Técnico**: 9.3/10 - **Cobertura de Testes**: 23.6% (Target: >80%) - **Deploy**: Kubernetes + Vercel + HuggingFace Spaces --- # CLAUDE.md - MODELOS IA Este arquivo fornece orientações para o Claude Code ao trabalhar com os modelos de IA e pipeline MLOps do Cidadão.AI. ## 🤖 Visão Geral dos Modelos IA **Cidadão.AI Models** é o repositório responsável pelos modelos de machine learning, pipeline MLOps e infraestrutura de IA que alimenta o sistema multi-agente. Este repositório gerencia treinamento, versionamento, deploy e monitoramento dos modelos especializados em transparência pública. **Status Atual**: **Pipeline MLOps em Desenvolvimento** - Infraestrutura para modelos personalizados, integração com HuggingFace Hub e pipeline de treinamento automatizado. ## 🏗️ Análise Arquitetural Modelos IA ### **Score Geral dos Modelos: 7.8/10** (Pipeline em Construção) O **Repositório de Modelos Cidadão.AI** representa uma **base sólida para MLOps** especializado em análise de transparência pública. O sistema está preparado para hospedar modelos customizados e integrar-se com o ecossistema de agentes. ### 📊 Métricas Técnicas Modelos - **Framework**: PyTorch + Transformers + HuggingFace - **MLOps**: MLflow + DVC + Weights & Biases - **Deploy**: HuggingFace Spaces + Docker containers - **Monitoring**: Model performance tracking + drift detection - **Storage**: HuggingFace Hub + cloud storage integration - **CI/CD**: Automated training + testing + deployment ### 🚀 Componentes Planejados (Score 7-8/10) - **Model Registry**: 7.8/10 - HuggingFace Hub integration - **Training Pipeline**: 7.5/10 - Automated training workflow - **Model Serving**: 7.7/10 - FastAPI + HuggingFace Spaces - **Monitoring**: 7.3/10 - Performance tracking system - **Version Control**: 8.0/10 - Git + DVC + HuggingFace ### 🎯 Componentes em Desenvolvimento (Score 6-7/10) - **Custom Models**: 6.8/10 - Domain-specific fine-tuning - **Data Pipeline**: 6.5/10 - ETL for training data - **Evaluation**: 6.7/10 - Automated model evaluation - **A/B Testing**: 6.3/10 - Model comparison framework ## 🧠 Arquitetura de Modelos ### **Modelos Especializados Planejados** ```python # Taxonomy dos Modelos Cidadão.AI models_taxonomy = { "corruption_detection": { "type": "classification", "base_model": "bert-base-multilingual-cased", "specialization": "Brazilian Portuguese + government documents", "use_case": "Detect corruption indicators in contracts" }, "anomaly_detection": { "type": "regression + classification", "base_model": "Custom ensemble", "specialization": "Financial data patterns", "use_case": "Identify unusual spending patterns" }, "entity_extraction": { "type": "NER", "base_model": "roberta-large", "specialization": "Government entities + Brazilian names", "use_case": "Extract companies, people, organizations" }, "sentiment_analysis": { "type": "classification", "base_model": "distilbert-base-uncased", "specialization": "Public opinion on transparency", "use_case": "Analyze citizen feedback sentiment" }, "summarization": { "type": "seq2seq", "base_model": "t5-base", "specialization": "Government reports + legal documents", "use_case": "Generate executive summaries" } } ``` ### **Pipeline MLOps Architecture** ```yaml # MLOps Workflow stages: data_collection: - Portal da Transparência APIs - Government databases - Public procurement data - Historical investigations data_preprocessing: - Data cleaning & validation - Privacy anonymization - Feature engineering - Data augmentation model_training: - Hyperparameter optimization - Cross-validation - Ensemble methods - Transfer learning model_evaluation: - Performance metrics - Fairness evaluation - Bias detection - Interpretability analysis model_deployment: - HuggingFace Spaces - Container deployment - API endpoints - Model serving monitoring: - Model drift detection - Performance degradation - Data quality monitoring - Usage analytics ``` ## 🔬 Modelos de IA Especializados ### **1. Corruption Detection Model** ```python # Modelo especializado em detecção de corrupção class CorruptionDetector: base_model: "bert-base-multilingual-cased" fine_tuned_on: "Brazilian government contracts + known corruption cases" features: - Contract language analysis - Pricing anomaly detection - Vendor relationship patterns - Temporal irregularities metrics: - Precision: >85% - Recall: >80% - F1-Score: >82% - False Positive Rate: <5% ``` ### **2. Anomaly Detection Ensemble** ```python # Ensemble para detecção de anomalias financeiras class AnomalyDetector: models: - IsolationForest: "Outlier detection" - LSTM: "Temporal pattern analysis" - Autoencoder: "Reconstruction error" - Random Forest: "Feature importance" features: - Amount deviation from median - Vendor concentration - Seasonal patterns - Geographic distribution output: - Anomaly score (0-1) - Confidence interval - Explanation vector - Risk category ``` ### **3. Entity Recognition (NER)** ```python # NER especializado para entidades governamentais class GovernmentNER: base_model: "roberta-large" entities: - ORGANIZATION: "Ministérios, órgãos, empresas" - PERSON: "Servidores, políticos, empresários" - LOCATION: "Estados, municípios, endereços" - CONTRACT: "Números de contratos, licitações" - MONEY: "Valores monetários, moedas" - DATE: "Datas de contratos, vigências" brazilian_specialization: - CPF/CNPJ recognition - Brazilian address patterns - Government terminology - Legal document structure ``` ## 🚀 HuggingFace Integration ### **Model Hub Strategy** ```python # HuggingFace Hub Organization organization: "cidadao-ai" models: - "cidadao-ai/corruption-detector-pt" - "cidadao-ai/anomaly-detector-financial" - "cidadao-ai/ner-government-entities" - "cidadao-ai/sentiment-transparency" - "cidadao-ai/summarization-reports" spaces: - "cidadao-ai/corruption-demo" - "cidadao-ai/anomaly-dashboard" - "cidadao-ai/transparency-analyzer" ``` ### **Model Cards Template** ```markdown # Model Card: Cidadão.AI Corruption Detector ## Model Description - **Developed by**: Cidadão.AI Team - **Model type**: BERT-based binary classifier - **Language**: Portuguese (Brazil) - **License**: MIT ## Training Data - **Sources**: Portal da Transparência + curated corruption cases - **Size**: 100K+ government contracts - **Preprocessing**: Anonymization + cleaning + augmentation ## Evaluation - **Test Set**: 10K held-out contracts - **Metrics**: Precision: 87%, Recall: 83%, F1: 85% - **Bias Analysis**: Evaluated across regions + contract types ## Ethical Considerations - **Intended Use**: Transparency analysis, not legal evidence - **Limitations**: May have bias toward certain contract types - **Risks**: False positives could damage reputations ``` ## 🛠️ MLOps Pipeline ### **Training Infrastructure** ```yaml # training-pipeline.yml name: Model Training Pipeline on: schedule: - cron: '0 2 * * 0' # Weekly retraining workflow_dispatch: jobs: data_preparation: runs-on: ubuntu-latest steps: - name: Fetch latest data - name: Validate data quality - name: Preprocess & augment model_training: runs-on: gpu-runner steps: - name: Hyperparameter optimization - name: Train model - name: Evaluate performance model_deployment: runs-on: ubuntu-latest if: model_performance > threshold steps: - name: Upload to HuggingFace Hub - name: Update model registry - name: Deploy to production ``` ### **Model Monitoring Dashboard** ```python # Métricas de monitoramento monitoring_metrics = { "performance": { "accuracy": "Real-time accuracy tracking", "latency": "Response time monitoring", "throughput": "Requests per second", "error_rate": "Failed prediction rate" }, "data_drift": { "feature_drift": "Input distribution changes", "label_drift": "Output distribution changes", "concept_drift": "Relationship changes" }, "business": { "investigations_triggered": "Anomalies detected", "false_positive_rate": "User feedback tracking", "citizen_satisfaction": "User experience metrics" } } ``` ## 🧪 Experimentação e Avaliação ### **Experiment Tracking** ```python # MLflow + Weights & Biases integration import mlflow import wandb def train_model(config): with mlflow.start_run(): wandb.init(project="cidadao-ai", config=config) # Log hyperparameters mlflow.log_params(config) wandb.config.update(config) # Training loop for epoch in range(config.epochs): metrics = train_epoch(model, train_loader) # Log metrics mlflow.log_metrics(metrics, step=epoch) wandb.log(metrics) # Log model artifacts mlflow.pytorch.log_model(model, "model") wandb.save("model.pt") ``` ### **A/B Testing Framework** ```python # Framework para testes A/B de modelos class ModelABTest: def __init__(self, model_a, model_b, traffic_split=0.5): self.model_a = model_a self.model_b = model_b self.traffic_split = traffic_split def predict(self, input_data, user_id): # Route traffic based on user_id hash if hash(user_id) % 100 < self.traffic_split * 100: result = self.model_a.predict(input_data) self.log_prediction("model_a", result, user_id) else: result = self.model_b.predict(input_data) self.log_prediction("model_b", result, user_id) return result ``` ## 📊 Datasets e Treinamento ### **Datasets Especializados** ```python # Datasets para treinamento datasets = { "transparency_contracts": { "source": "Portal da Transparência API", "size": "500K+ contracts", "format": "JSON + PDF text extraction", "labels": "Manual annotation + expert review" }, "corruption_cases": { "source": "Historical investigations + court records", "size": "10K+ labeled cases", "format": "Structured data + documents", "labels": "Binary classification + severity" }, "financial_anomalies": { "source": "Government spending data", "size": "1M+ transactions", "format": "Tabular data", "labels": "Statistical outliers + domain expert" } } ``` ### **Data Preprocessing Pipeline** ```python # Pipeline de preprocessamento class DataPreprocessor: def __init__(self): self.tokenizer = AutoTokenizer.from_pretrained("bert-base-multilingual-cased") self.anonymizer = GovernmentDataAnonymizer() def preprocess_contract(self, contract_text): # 1. Anonymize sensitive information anonymized = self.anonymizer.anonymize(contract_text) # 2. Clean and normalize text cleaned = self.clean_text(anonymized) # 3. Tokenize for model input tokens = self.tokenizer( cleaned, max_length=512, truncation=True, padding=True, return_tensors="pt" ) return tokens ``` ## 🔄 Integração com Backend ### **Model Serving API** ```python # FastAPI endpoints para servir modelos from fastapi import FastAPI from transformers import pipeline app = FastAPI() # Load models corruption_detector = pipeline( "text-classification", model="cidadao-ai/corruption-detector-pt" ) anomaly_detector = joblib.load("models/anomaly_detector.pkl") @app.post("/analyze/corruption") async def detect_corruption(contract_text: str): result = corruption_detector(contract_text) return { "prediction": result[0]["label"], "confidence": result[0]["score"], "model_version": "v1.0.0" } @app.post("/analyze/anomaly") async def detect_anomaly(financial_data: dict): features = extract_features(financial_data) anomaly_score = anomaly_detector.predict(features) return { "anomaly_score": float(anomaly_score), "is_anomaly": anomaly_score > 0.7, "explanation": generate_explanation(features) } ``` ### **Agent Integration** ```python # Integração com sistema multi-agente class ModelService: def __init__(self): self.models = { "corruption": self.load_corruption_model(), "anomaly": self.load_anomaly_model(), "ner": self.load_ner_model() } async def analyze_for_agent(self, agent_name: str, data: dict): if agent_name == "InvestigatorAgent": return await self.detect_anomalies(data) elif agent_name == "CorruptionDetectorAgent": return await self.detect_corruption(data) elif agent_name == "AnalystAgent": return await self.extract_entities(data) ``` ## 🔒 Ética e Governança ### **Responsible AI Principles** ```python # Princípios de IA Responsável class ResponsibleAI: principles = { "transparency": "Explicabilidade em todas as decisões", "fairness": "Avaliação de viés em grupos demográficos", "privacy": "Anonimização de dados pessoais", "accountability": "Auditoria e rastreabilidade", "robustness": "Teste contra adversarial attacks" } def evaluate_bias(self, model, test_data, protected_attributes): """Avalia viés do modelo em grupos protegidos""" bias_metrics = {} for attr in protected_attributes: group_metrics = self.compute_group_metrics(model, test_data, attr) bias_metrics[attr] = group_metrics return bias_metrics ``` ### **Model Interpretability** ```python # Ferramentas de interpretabilidade from lime.lime_text import LimeTextExplainer from shap import Explainer class ModelExplainer: def __init__(self, model): self.model = model self.lime_explainer = LimeTextExplainer() self.shap_explainer = Explainer(model) def explain_prediction(self, text, method="lime"): if method == "lime": explanation = self.lime_explainer.explain_instance( text, self.model.predict_proba ) elif method == "shap": explanation = self.shap_explainer(text) return explanation ``` ## 📋 Roadmap Modelos IA ### **Curto Prazo (1-2 meses)** 1. **Setup MLOps Pipeline**: MLflow + DVC + CI/CD 2. **Corruption Detection Model**: Fine-tune BERT para português 3. **HuggingFace Integration**: Upload initial models 4. **Basic Monitoring**: Performance tracking dashboard ### **Médio Prazo (3-6 meses)** 1. **Anomaly Detection Ensemble**: Multiple algorithms 2. **NER Government Entities**: Custom entity recognition 3. **Model A/B Testing**: Production experimentation 4. **Advanced Monitoring**: Drift detection + alerting ### **Longo Prazo (6+ meses)** 1. **Custom Architecture**: Domain-specific model architectures 2. **Federated Learning**: Privacy-preserving training 3. **AutoML Pipeline**: Automated model selection 4. **Edge Deployment**: Local model inference ## ⚠️ Áreas para Melhoria ### **Priority 1: Data Pipeline** - **Data Collection**: Automated data ingestion - **Data Quality**: Validation + cleaning pipelines - **Labeling**: Active learning + human-in-the-loop - **Privacy**: Advanced anonymization techniques ### **Priority 2: Model Development** - **Custom Models**: Domain-specific architectures - **Transfer Learning**: Portuguese government domain - **Ensemble Methods**: Model combination strategies - **Optimization**: Model compression + acceleration ### **Priority 3: MLOps Maturity** - **CI/CD**: Automated testing + deployment - **Monitoring**: Comprehensive drift detection - **Experimentation**: A/B testing framework - **Governance**: Model audit + compliance ## 🎯 Métricas de Sucesso ### **Technical Metrics** - **Model Performance**: F1 > 85% for all models - **Inference Latency**: <200ms response time - **Deployment Success**: >99% uptime - **Data Pipeline**: <1% data quality issues ### **Business Metrics** - **Anomalies Detected**: 100+ monthly - **False Positive Rate**: <5% - **User Satisfaction**: >80% positive feedback - **Investigation Success**: >70% actionable insights ## 🔧 Comandos de Desenvolvimento ### **Model Training** ```bash # Train corruption detection model python train_corruption_detector.py --config configs/corruption_bert.yaml # Evaluate model performance python evaluate_model.py --model corruption_detector --test_data data/test.json # Upload to HuggingFace Hub python upload_to_hub.py --model_path models/corruption_detector --repo_name cidadao-ai/corruption-detector-pt ``` ### **Monitoring** ```bash # Check model drift python monitor_drift.py --model corruption_detector --window 7d # Generate performance report python generate_report.py --models all --period monthly ``` ## 📝 Considerações Técnicas ### **Compute Requirements** - **Training**: GPU-enabled instances (V100/A100) - **Inference**: CPU instances sufficient for most models - **Storage**: Cloud storage for datasets + model artifacts - **Monitoring**: Real-time metrics collection ### **Security** - **Model Protection**: Encrypted model artifacts - **API Security**: Authentication + rate limiting - **Data Privacy**: LGPD compliance + anonymization - **Audit Trail**: Complete lineage tracking ### **Scalability** - **Horizontal Scaling**: Load balancer + multiple instances - **Model Versioning**: Backward compatibility - **Cache Strategy**: Redis for frequent predictions - **Batch Processing**: Async inference for large datasets --- **Models Status**: Pipeline em desenvolvimento com infraestrutura sólida para modelos especializados. **Next Update**: Implementação do primeiro modelo de detecção de corrupção e pipeline MLOps completo.