File size: 8,553 Bytes
1fbb4fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# 🔒 Security Policy - Cidadão.AI Models

## 📋 Overview

This document outlines the security practices and vulnerability disclosure process for the Cidadão.AI Models repository, which contains machine learning models and MLOps infrastructure for government transparency analysis.

## ⚠️ Supported Versions

| Version | Supported          |
| ------- | ------------------ |
| 1.0.x   | :white_check_mark: |

## 🛡️ Security Features

### ML Model Security
- **Model Integrity**: SHA-256 checksums for all model artifacts
- **Supply Chain Security**: Verified model provenance and lineage
- **Input Validation**: Robust validation of all model inputs
- **Output Sanitization**: Safe handling of model predictions
- **Adversarial Robustness**: Testing against adversarial attacks

### Data Security
- **Data Privacy**: Personal data anonymization in training datasets
- **LGPD Compliance**: Brazilian data protection law compliance
- **Secure Storage**: Encrypted storage of sensitive training data
- **Access Controls**: Role-based access to model artifacts
- **Audit Trails**: Complete logging of model training and deployment

### Infrastructure Security
- **Container Security**: Secure Docker images with minimal attack surface
- **Dependency Scanning**: Regular vulnerability scanning of Python packages
- **Secret Management**: Secure handling of API keys and model credentials
- **Network Security**: Encrypted communications for all model serving
- **Environment Isolation**: Separate environments for training and production

## 🚨 Reporting Security Vulnerabilities

### How to Report
1. **DO NOT** create a public GitHub issue for security vulnerabilities
2. Send an email to: **[email protected]** (or [email protected])
3. Include detailed information about the vulnerability
4. We will acknowledge receipt within 48 hours

### What to Include
- Description of the vulnerability
- Affected models or components
- Steps to reproduce the issue
- Potential impact on model performance or security
- Data samples (if safe to share)
- Suggested remediation (if available)
- Your contact information

### Response Timeline
- **Initial Response**: Within 48 hours
- **Investigation**: 1-7 days depending on severity
- **Model Retraining**: 1-14 days if required
- **Deployment**: 1-3 days after fix verification
- **Public Disclosure**: After fix is deployed (coordinated disclosure)

## 🛠️ Security Best Practices

### Model Development Security
```python
# Example secure model loading
import hashlib
import pickle

def secure_model_load(model_path, expected_hash):
    """Safely load model with integrity verification"""
    with open(model_path, 'rb') as f:
        model_data = f.read()
    
    # Verify model integrity
    model_hash = hashlib.sha256(model_data).hexdigest()
    if model_hash != expected_hash:
        raise SecurityError("Model integrity check failed")
    
    return pickle.loads(model_data)
```

### Data Handling Security
```python
# Example data anonymization
def anonymize_government_data(data):
    """Remove or hash personally identifiable information"""
    # Remove CPF, names, addresses
    # Hash vendor IDs
    # Preserve analytical utility while protecting privacy
    return anonymized_data
```

### Deployment Security
```bash
# Security checks before model deployment
pip audit                           # Check for vulnerable dependencies
bandit -r src/                     # Security linting
safety check                       # Known security vulnerabilities
docker scan cidadao-ai-models:latest # Container vulnerability scan
```

## 🔍 Security Testing

### Model Security Testing
- **Adversarial Testing**: Robustness against adversarial examples
- **Data Poisoning**: Detection of malicious training data
- **Model Extraction**: Protection against model stealing attacks
- **Membership Inference**: Privacy testing for training data
- **Fairness Testing**: Bias detection across demographic groups

### Infrastructure Testing
- **Penetration Testing**: Regular security assessments
- **Dependency Scanning**: Automated vulnerability detection
- **Container Security**: Image scanning and hardening
- **API Security**: Authentication and authorization testing
- **Network Security**: Encryption and secure communications

## 🎯 Model-Specific Security Considerations

### Corruption Detection Models
- **False Positive Impact**: Careful calibration to minimize false accusations
- **Bias Prevention**: Regular testing for demographic and regional bias
- **Transparency**: Explainable AI for all corruption predictions
- **Audit Trail**: Complete logging of all corruption detections

### Anomaly Detection Models
- **Threshold Management**: Secure configuration of anomaly thresholds
- **Feature Security**: Protection of sensitive features from exposure
- **Model Drift**: Monitoring for performance degradation over time
- **Validation**: Human expert validation of anomaly predictions

### Natural Language Models
- **Text Sanitization**: Safe handling of government document text
- **Information Extraction**: Secure extraction without data leakage
- **Language Security**: Protection against prompt injection attacks
- **Content Filtering**: Removal of personally identifiable information

## 📊 Privacy and Ethics

### Data Privacy
- **Anonymization**: Personal data removed or hashed in all models
- **Minimal Collection**: Only necessary data used for model training
- **Retention Limits**: Training data deleted after model deployment
- **Access Logs**: Complete audit trail of data access
- **Consent Management**: Respect for data subject rights under LGPD

### Ethical AI
- **Fairness**: Regular bias testing and mitigation
- **Transparency**: Explainable predictions for all model outputs
- **Accountability**: Clear responsibility for model decisions
- **Human Oversight**: Human review required for high-impact predictions
- **Social Impact**: Assessment of model impact on society

## 📞 Contact Information

### Security Team
- **Primary Contact**: [email protected]
- **ML Security**: [email protected] (or [email protected])
- **Data Privacy**: [email protected] (or [email protected])
- **Response SLA**: 48 hours for critical model security issues

### Emergency Contact
For critical security incidents affecting production models:
- **Email**: [email protected] (Priority: CRITICAL)
- **Subject**: [URGENT ML SECURITY] Brief description

## 🔬 Model Governance

### Model Registry Security
- **Version Control**: Secure versioning of all model artifacts
- **Access Control**: Role-based access to model registry
- **Audit Logging**: Complete history of model updates
- **Approval Process**: Required approval for production deployments

### Monitoring and Alerting
- **Performance Monitoring**: Real-time model performance tracking
- **Security Monitoring**: Detection of anomalous model behavior
- **Data Drift Detection**: Monitoring for changes in input distributions
- **Alert System**: Immediate notification of security incidents

## 📚 Security Resources

### ML Security Documentation
- [OWASP Machine Learning Security Top 10](https://owasp.org/www-project-machine-learning-security-top-10/)
- [NIST AI Risk Management Framework](https://www.nist.gov/itl/ai-risk-management-framework)
- [Google ML Security Best Practices](https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning)

### Security Tools
- **Model Scanning**: TensorFlow Privacy, PyTorch Security
- **Data Validation**: TensorFlow Data Validation (TFDV)
- **Bias Detection**: Fairness Indicators, AI Fairness 360
- **Adversarial Testing**: Foolbox, CleverHans

## 🔄 Incident Response

### Model Security Incidents
1. **Immediate Response**: Isolate affected models from production
2. **Assessment**: Evaluate impact and scope of security breach
3. **Containment**: Prevent further damage or data exposure
4. **Investigation**: Determine root cause and affected systems
5. **Recovery**: Retrain or redeploy secure models
6. **Post-Incident**: Review and improve security measures

### Communication Plan
- **Internal**: Immediate notification to security team and stakeholders
- **External**: Coordinated disclosure to affected users and regulators
- **Public**: Transparent communication about resolved issues

---

**Note**: This security policy is reviewed quarterly and updated as needed. Last updated: January 2025.

For questions about this security policy, contact: [email protected]