File size: 6,093 Bytes
b95e73a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
#!/usr/bin/env python3
"""
Cidadão.AI Models - HuggingFace Spaces Entry Point

FastAPI server for ML model inference optimized for HuggingFace Spaces deployment.
"""

import os
import sys
import logging
from contextlib import asynccontextmanager

import uvicorn
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse, HTMLResponse

# Configure logging for HuggingFace
logging.basicConfig(
    level=logging.INFO,
    format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
    handlers=[logging.StreamHandler(sys.stdout)]
)
logger = logging.getLogger(__name__)

# Import our API server
try:
    from src.inference.api_server import app as models_app
    MODELS_AVAILABLE = True
    logger.info("✅ Models API successfully imported")
except Exception as e:
    logger.error(f"❌ Failed to import models API: {e}")
    MODELS_AVAILABLE = False

@asynccontextmanager
async def lifespan(app: FastAPI):
    """Application lifespan manager for HuggingFace Spaces."""
    logger.info("🚀 Starting Cidadão.AI Models on HuggingFace Spaces")
    logger.info(f"🔧 Environment: {os.getenv('SPACE_ID', 'local')}")
    logger.info(f"🌐 Port: {os.getenv('PORT', '8001')}")
    
    yield
    
    logger.info("🛑 Shutting down Cidadão.AI Models")

if MODELS_AVAILABLE:
    # Use the imported models app
    app = models_app
    logger.info("Using full models API")
else:
    # Fallback minimal app
    app = FastAPI(
        title="🤖 Cidadão.AI Models (Fallback)",
        description="Minimal fallback API when models are not available",
        version="1.0.0",
        lifespan=lifespan
    )
    
    app.add_middleware(
        CORSMiddleware,
        allow_origins=["*"],
        allow_credentials=True,
        allow_methods=["*"],
        allow_headers=["*"],
    )
    
    @app.get("/", response_class=HTMLResponse)
    async def fallback_root():
        """Fallback root with information about the service."""
        return """
        <html>
            <head>
                <title>Cidadão.AI Models</title>
                <style>
                    body { font-family: Arial, sans-serif; margin: 40px; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; }
                    .container { max-width: 800px; margin: 0 auto; padding: 20px; background: rgba(255,255,255,0.1); border-radius: 10px; }
                    h1 { font-size: 2.5em; margin-bottom: 10px; }
                    .emoji { font-size: 1.2em; }
                    .status { background: rgba(255,255,255,0.2); padding: 15px; border-radius: 5px; margin: 20px 0; }
                    .endpoint { background: rgba(0,0,0,0.2); padding: 10px; border-radius: 5px; margin: 10px 0; font-family: monospace; }
                </style>
            </head>
            <body>
                <div class="container">
                    <h1>🤖 Cidadão.AI Models</h1>
                    <p><strong>Sistema de ML para Transparência Pública Brasileira</strong></p>
                    
                    <div class="status">
                        <h3>📊 Status do Sistema</h3>
                        <p>⚠️ Modo Fallback - Modelos ML não disponíveis</p>
                        <p>🔧 Para funcionalidade completa, verifique as dependências</p>
                    </div>
                    
                    <div class="status">
                        <h3>🔗 Endpoints Disponíveis</h3>
                        <div class="endpoint">GET /health - Health check</div>
                        <div class="endpoint">GET /docs - Documentação da API</div>
                        <div class="endpoint">GET / - Esta página</div>
                    </div>
                    
                    <div class="status">
                        <h3>🏛️ Sobre o Cidadão.AI</h3>
                        <p>Sistema multi-agente de IA para análise de transparência pública, 
                        especializado em detectar anomalias e padrões suspeitos em dados 
                        governamentais brasileiros.</p>
                    </div>
                    
                    <p style="text-align: center; margin-top: 40px;">
                        <a href="/docs" style="color: white; text-decoration: underline;">
                            📚 Ver Documentação da API
                        </a>
                    </p>
                </div>
            </body>
        </html>
        """
    
    @app.get("/health")
    async def fallback_health():
        """Fallback health check."""
        return {
            "status": "limited",
            "mode": "fallback",
            "models_loaded": False,
            "message": "Models not available, running in fallback mode"
        }
    
    logger.info("Using fallback minimal API")

# Add HuggingFace Spaces specific routes
@app.get("/spaces-info")
async def spaces_info():
    """HuggingFace Spaces specific information."""
    return {
        "platform": "HuggingFace Spaces",
        "space_id": os.getenv("SPACE_ID", "unknown"),
        "space_author": os.getenv("SPACE_AUTHOR", "cidadao-ai"),
        "space_title": os.getenv("SPACE_TITLE", "Cidadão.AI Models"),
        "sdk": "docker",
        "port": int(os.getenv("PORT", "8001")),
        "models_available": MODELS_AVAILABLE
    }

if __name__ == "__main__":
    # Configuration for HuggingFace Spaces
    port = int(os.getenv("PORT", "8001"))
    host = os.getenv("HOST", "0.0.0.0")
    
    logger.info(f"🚀 Starting server on {host}:{port}")
    logger.info(f"📊 Models available: {MODELS_AVAILABLE}")
    
    try:
        # Use uvicorn with optimized settings for HuggingFace
        uvicorn.run(
            app,
            host=host,
            port=port,
            log_level="info",
            access_log=True,
            workers=1,  # Single worker for HuggingFace Spaces
            loop="asyncio"
        )
    except Exception as e:
        logger.error(f"❌ Failed to start server: {str(e)}")
        sys.exit(1)