Spaces:
Running
Running
File size: 28,628 Bytes
c1bee18 c2e6d7e c1bee18 c663c5b 316b003 bf154be 0c94952 c1bee18 9a48f85 c1bee18 8243b24 c1bee18 0c94952 c1bee18 0c94952 dd78fc1 c663c5b dd78fc1 c1bee18 bf154be c1bee18 4ddd600 8243b24 d48e4d6 c1bee18 dd78fc1 4ddd600 c1bee18 8243b24 d48e4d6 c1bee18 dd78fc1 4ddd600 c1bee18 d48e4d6 8243b24 d48e4d6 8243b24 d48e4d6 8243b24 9a48f85 dd78fc1 9a48f85 c1bee18 0c94952 c1bee18 0c94952 c1bee18 c663c5b c1bee18 d48e4d6 8243b24 c1bee18 316b003 c1bee18 8243b24 d48e4d6 c1bee18 d48e4d6 8243b24 d48e4d6 8243b24 d48e4d6 8243b24 c1bee18 43a0ca3 0c94952 43a0ca3 0c94952 43a0ca3 c663c5b 43a0ca3 316b003 43a0ca3 0d77564 43333ad 0d77564 43333ad f76cd43 0d77564 43333ad 79662c9 0d77564 43333ad 0d77564 c663c5b 0d77564 43333ad 0d77564 f76cd43 0d77564 43333ad 0d77564 316b003 0d77564 43333ad 79662c9 43333ad 79662c9 43333ad 0d77564 43333ad 0d77564 6244d01 0c94952 6244d01 0c94952 6244d01 316b003 6244d01 43a0ca3 0d77564 43333ad c1bee18 c2e6d7e c1bee18 c2e6d7e c1bee18 43a0ca3 6244d01 c1bee18 bf154be c2e6d7e bf154be 9a48f85 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 |
"""
UI components for AI-Inferoxy AI Hub.
Contains functions to create different sections of the Gradio interface.
"""
import gradio as gr
from utils import (
DEFAULT_CHAT_MODEL, DEFAULT_IMAGE_MODEL, DEFAULT_PROVIDER,
DEFAULT_IMAGE_TO_IMAGE_MODEL,
DEFAULT_TTS_MODEL,
CHAT_CONFIG, IMAGE_CONFIG, IMAGE_PROVIDERS,
TTS_VOICES, TTS_MODEL_CONFIGS,
CHAT_EXAMPLE_PROMPTS, IMAGE_EXAMPLE_PROMPTS, IMAGE_TO_IMAGE_EXAMPLE_PROMPTS, TTS_EXAMPLE_TEXTS, TTS_EXAMPLE_AUDIO_URLS,
DEFAULT_VIDEO_MODEL, VIDEO_EXAMPLE_PROMPTS,
SUGGESTED_CHAT_MODELS, SUGGESTED_IMAGE_MODELS, SUGGESTED_IMAGE_TO_IMAGE_MODELS, SUGGESTED_VIDEO_MODELS
)
def create_chat_tab(handle_chat_submit_fn, handle_chat_retry_fn=None):
"""
Create the chat tab interface.
"""
with gr.Tab("π¬ Chat Assistant", id="chat"):
# Chat interface at the top - most prominent
chatbot_display = gr.Chatbot(
label="Chat",
type="messages",
height=800,
show_copy_button=True
)
# Chat input
with gr.Row():
chat_input = gr.Textbox(
placeholder="Type your message here...",
label="Message",
scale=4,
container=False
)
chat_submit = gr.Button("Send", variant="primary", scale=1)
chat_stop = gr.Button("βΉ Stop", variant="secondary", scale=0, visible=False)
# Configuration options below the chat
with gr.Row():
with gr.Column(scale=1):
chat_model_name = gr.Dropdown(
choices=SUGGESTED_CHAT_MODELS,
value=DEFAULT_CHAT_MODEL,
label="Model",
info="Select or type any model id",
allow_custom_value=True,
interactive=True
)
chat_provider = gr.Dropdown(
choices=IMAGE_PROVIDERS,
value=DEFAULT_PROVIDER,
label="Provider",
interactive=True
)
chat_system_message = gr.Textbox(
value=CHAT_CONFIG["system_message"],
label="System Message",
lines=2,
placeholder="Define the assistant's personality and behavior..."
)
with gr.Column(scale=1):
chat_max_tokens = gr.Slider(
minimum=1, maximum=4096, value=CHAT_CONFIG["max_tokens"], step=1,
label="Max New Tokens"
)
chat_temperature = gr.Slider(
minimum=0.1, maximum=2.0, value=CHAT_CONFIG["temperature"], step=0.1,
label="Temperature"
)
chat_top_p = gr.Slider(
minimum=0.1, maximum=1.0, value=CHAT_CONFIG["top_p"], step=0.05,
label="Top-p (nucleus sampling)"
)
# Example prompts for chat
with gr.Group():
gr.Markdown("**π Example Prompts**")
gr.Examples(
examples=[[p] for p in CHAT_EXAMPLE_PROMPTS],
inputs=chat_input
)
# Connect chat events (streaming auto-detected from generator function)
# Show stop immediately when sending
chat_submit.click(
fn=lambda: gr.update(visible=True),
inputs=None,
outputs=[chat_stop],
queue=False
)
chat_send_event = chat_submit.click(
fn=handle_chat_submit_fn,
inputs=[chat_input, chatbot_display, chat_system_message, chat_model_name,
chat_provider, chat_max_tokens, chat_temperature, chat_top_p],
outputs=[chatbot_display, chat_input]
)
# Show stop immediately when pressing Enter
chat_input.submit(
fn=lambda: gr.update(visible=True),
inputs=None,
outputs=[chat_stop],
queue=False
)
chat_enter_event = chat_input.submit(
fn=handle_chat_submit_fn,
inputs=[chat_input, chatbot_display, chat_system_message, chat_model_name,
chat_provider, chat_max_tokens, chat_temperature, chat_top_p],
outputs=[chatbot_display, chat_input]
)
# Stop current chat generation
chat_stop.click(
fn=lambda: gr.update(visible=False),
inputs=None,
outputs=[chat_stop],
cancels=[chat_send_event, chat_enter_event],
queue=False
)
# Hide stop after completion of chat events
chat_send_event.then(lambda: gr.update(visible=False), None, [chat_stop], queue=False)
chat_enter_event.then(lambda: gr.update(visible=False), None, [chat_stop], queue=False)
# Enable retry icon and bind handler if provided
if handle_chat_retry_fn is not None:
chatbot_display.retry(
fn=handle_chat_retry_fn,
inputs=[chatbot_display, chat_system_message, chat_model_name,
chat_provider, chat_max_tokens, chat_temperature, chat_top_p],
outputs=chatbot_display
)
def create_image_tab(handle_image_generation_fn):
"""
Create the image generation tab interface.
"""
with gr.Tab("π¨ Image Generator", id="image"):
with gr.Row():
with gr.Column(scale=2):
# Image output
output_image = gr.Image(
label="Generated Image",
type="pil",
height=600,
show_download_button=True
)
status_text = gr.Textbox(
label="Generation Status",
interactive=False,
lines=2
)
with gr.Column(scale=1):
# Model and provider inputs
with gr.Group():
gr.Markdown("**π€ Model & Provider**")
img_model_name = gr.Dropdown(
choices=SUGGESTED_IMAGE_MODELS,
value=DEFAULT_IMAGE_MODEL,
label="Model",
info="Select or type any model id",
allow_custom_value=True,
interactive=True
)
img_provider = gr.Dropdown(
choices=IMAGE_PROVIDERS,
value=DEFAULT_PROVIDER,
label="Provider",
interactive=True
)
# Generation parameters
with gr.Group():
gr.Markdown("**π Prompts**")
img_prompt = gr.Textbox(
value=IMAGE_EXAMPLE_PROMPTS[0], # Use first example as default
label="Prompt",
lines=3,
placeholder="Describe the image you want to generate..."
)
img_negative_prompt = gr.Textbox(
value=IMAGE_CONFIG["negative_prompt"],
label="Negative Prompt",
lines=2,
placeholder="Describe what you DON'T want in the image..."
)
with gr.Group():
gr.Markdown("**βοΈ Generation Settings**")
with gr.Row():
img_width = gr.Slider(
minimum=256, maximum=2048, value=IMAGE_CONFIG["width"], step=64,
label="Width", info="Must be divisible by 8"
)
img_height = gr.Slider(
minimum=256, maximum=2048, value=IMAGE_CONFIG["height"], step=64,
label="Height", info="Must be divisible by 8"
)
with gr.Row():
img_steps = gr.Slider(
minimum=10, maximum=100, value=IMAGE_CONFIG["num_inference_steps"], step=1,
label="Inference Steps", info="More steps = better quality"
)
img_guidance = gr.Slider(
minimum=1.0, maximum=20.0, value=IMAGE_CONFIG["guidance_scale"], step=0.5,
label="Guidance Scale", info="How closely to follow prompt"
)
img_seed = gr.Slider(
minimum=-1, maximum=999999, value=IMAGE_CONFIG["seed"], step=1,
label="Seed", info="-1 for random"
)
# Generate and Stop buttons
with gr.Row():
generate_btn = gr.Button(
"π¨ Generate Image",
variant="primary",
size="lg",
scale=2
)
stop_generate_btn = gr.Button("βΉ Stop", variant="secondary", visible=False)
# Examples for image generation
create_image_examples(img_prompt)
# Connect image generation events
# Show stop immediately when starting generation
generate_btn.click(
fn=lambda: gr.update(visible=True),
inputs=None,
outputs=[stop_generate_btn],
queue=False
)
gen_event = generate_btn.click(
fn=handle_image_generation_fn,
inputs=[
img_prompt, img_model_name, img_provider, img_negative_prompt,
img_width, img_height, img_steps, img_guidance, img_seed
],
outputs=[output_image, status_text]
)
# Stop current image generation
stop_generate_btn.click(
fn=lambda: gr.update(visible=False),
inputs=None,
outputs=[stop_generate_btn],
cancels=[gen_event],
queue=False
)
# Hide stop after generation completes
gen_event.then(lambda: gr.update(visible=False), None, [stop_generate_btn], queue=False)
def create_image_to_image_tab(handle_image_to_image_generation_fn):
"""
Create the image-to-image tab interface.
"""
with gr.Tab("πΌοΈ Image-to-Image", id="image-to-image"):
with gr.Row():
with gr.Column(scale=1):
# Input image
input_image = gr.Image(
label="Input Image",
type="pil",
height=400,
show_download_button=True
)
# Model and provider inputs
with gr.Group():
gr.Markdown("**π€ Model & Provider**")
img2img_model_name = gr.Dropdown(
choices=SUGGESTED_IMAGE_TO_IMAGE_MODELS,
value=DEFAULT_IMAGE_TO_IMAGE_MODEL,
label="Model",
info="Select or type any model id",
allow_custom_value=True,
interactive=True
)
img2img_provider = gr.Dropdown(
choices=IMAGE_PROVIDERS,
value=DEFAULT_PROVIDER,
label="Provider",
interactive=True
)
with gr.Column(scale=1):
# Output image
output_image = gr.Image(
label="Generated Image",
type="pil",
height=400,
show_download_button=True
)
status_text = gr.Textbox(
label="Generation Status",
interactive=False,
lines=2
)
with gr.Column(scale=1):
# Generation parameters
with gr.Group():
gr.Markdown("**π Prompts**")
img2img_prompt = gr.Textbox(
value=IMAGE_TO_IMAGE_EXAMPLE_PROMPTS[0], # Use first example as default
label="Prompt",
lines=3,
placeholder="Describe how you want to modify the image..."
)
img2img_negative_prompt = gr.Textbox(
value=IMAGE_CONFIG["negative_prompt"],
label="Negative Prompt",
lines=2,
placeholder="Describe what you DON'T want in the modified image..."
)
with gr.Group():
gr.Markdown("**βοΈ Generation Settings**")
with gr.Row():
img2img_steps = gr.Slider(
minimum=10, maximum=100, value=IMAGE_CONFIG["num_inference_steps"], step=1,
label="Inference Steps", info="More steps = better quality"
)
img2img_guidance = gr.Slider(
minimum=1.0, maximum=20.0, value=IMAGE_CONFIG["guidance_scale"], step=0.5,
label="Guidance Scale", info="How closely to follow prompt"
)
img2img_seed = gr.Slider(
minimum=-1, maximum=999999, value=IMAGE_CONFIG["seed"], step=1,
label="Seed", info="-1 for random"
)
# Generate and Stop buttons
with gr.Row():
generate_btn = gr.Button(
"πΌοΈ Generate Image-to-Image",
variant="primary",
size="lg",
scale=2
)
stop_generate_btn = gr.Button("βΉ Stop", variant="secondary", visible=False)
# Examples for image-to-image generation
create_image_to_image_examples(img2img_prompt)
# Connect image-to-image generation events
# Show stop immediately when starting generation
generate_btn.click(
fn=lambda: gr.update(visible=True),
inputs=None,
outputs=[stop_generate_btn],
queue=False
)
gen_event = generate_btn.click(
fn=handle_image_to_image_generation_fn,
inputs=[
input_image, img2img_prompt, img2img_model_name, img2img_provider, img2img_negative_prompt,
img2img_steps, img2img_guidance, img2img_seed
],
outputs=[output_image, status_text]
)
# Stop current image-to-image generation
stop_generate_btn.click(
fn=lambda: gr.update(visible=False),
inputs=None,
outputs=[stop_generate_btn],
cancels=[gen_event],
queue=False
)
# Hide stop after generation completes
gen_event.then(lambda: gr.update(visible=False), None, [stop_generate_btn], queue=False)
def create_tts_tab(handle_tts_generation_fn):
"""
Create the text-to-speech tab interface with dynamic model-specific settings.
"""
with gr.Tab("π€ Text-to-Speech", id="tts"):
with gr.Row():
with gr.Column(scale=2):
# Text input
tts_text = gr.Textbox(
value=TTS_EXAMPLE_TEXTS[0], # Use first example as default
label="Text to Convert",
lines=6,
placeholder="Enter the text you want to convert to speech..."
)
# Audio output
output_audio = gr.Audio(
label="Generated Audio",
type="numpy",
interactive=False,
autoplay=True,
show_download_button=True
)
status_text = gr.Textbox(
label="Generation Status",
interactive=False,
lines=2
)
with gr.Column(scale=1):
# Model and provider inputs
with gr.Group():
gr.Markdown("**π€ Model & Provider**")
tts_model_name = gr.Dropdown(
choices=["hexgrad/Kokoro-82M", "ResembleAI/chatterbox", "nari-labs/Dia-1.6B"],
value=DEFAULT_TTS_MODEL,
label="Model",
info="Select TTS model"
)
tts_provider = gr.Dropdown(
choices=IMAGE_PROVIDERS,
value=DEFAULT_PROVIDER,
label="Provider",
interactive=True
)
# Kokoro-specific settings (initially visible)
with gr.Group(visible=True) as kokoro_settings:
gr.Markdown("**π€ Kokoro Voice Settings**")
tts_voice = gr.Dropdown(
choices=list(TTS_VOICES.items()),
value="af_bella",
label="Voice",
info="Choose from various English voices"
)
tts_speed = gr.Slider(
minimum=0.5, maximum=2.0, value=1.0, step=0.1,
label="Speed", info="0.5 = slow, 2.0 = fast"
)
# Chatterbox-specific settings (initially hidden)
with gr.Group(visible=False) as chatterbox_settings:
gr.Markdown("**π Chatterbox Style Settings**")
tts_audio_url = gr.Textbox(
value=TTS_EXAMPLE_AUDIO_URLS[0],
label="Reference Audio URL",
placeholder="Enter URL to reference audio file",
info="Audio file to match style and tone"
)
tts_exaggeration = gr.Slider(
minimum=0.0, maximum=1.0, value=0.25, step=0.05,
label="Exaggeration", info="How much to exaggerate the style"
)
tts_temperature = gr.Slider(
minimum=0.0, maximum=1.0, value=0.7, step=0.1,
label="Temperature", info="Creativity level"
)
tts_cfg = gr.Slider(
minimum=0.0, maximum=1.0, value=0.5, step=0.1,
label="CFG", info="Guidance strength"
)
# Generate and Stop buttons
with gr.Row():
generate_btn = gr.Button(
"π€ Generate Speech",
variant="primary",
size="lg",
scale=2
)
stop_generate_btn = gr.Button("βΉ Stop", variant="secondary", visible=False)
# Examples for TTS generation
create_tts_examples(tts_text)
# Create Chatterbox audio URL examples
create_chatterbox_examples(tts_audio_url)
# Model change handler to show/hide appropriate settings
def on_model_change(model_name):
if model_name == "hexgrad/Kokoro-82M":
return gr.update(visible=True), gr.update(visible=False)
elif model_name == "ResembleAI/chatterbox":
return gr.update(visible=False), gr.update(visible=True)
elif model_name == "nari-labs/Dia-1.6B":
return gr.update(visible=False), gr.update(visible=False)
else:
return gr.update(visible=False), gr.update(visible=False)
# Connect model change event
tts_model_name.change(
fn=on_model_change,
inputs=[tts_model_name],
outputs=[kokoro_settings, chatterbox_settings]
)
# Connect TTS generation events
# Show stop immediately when starting generation
generate_btn.click(
fn=lambda: gr.update(visible=True),
inputs=None,
outputs=[stop_generate_btn],
queue=False
)
gen_event = generate_btn.click(
fn=handle_tts_generation_fn,
inputs=[
tts_text, tts_model_name, tts_provider, tts_voice, tts_speed,
tts_audio_url, tts_exaggeration, tts_temperature, tts_cfg
],
outputs=[output_audio, status_text]
)
# Stop current TTS generation
stop_generate_btn.click(
fn=lambda: gr.update(visible=False),
inputs=None,
outputs=[stop_generate_btn],
cancels=[gen_event],
queue=False
)
# Hide stop after generation completes
gen_event.then(lambda: gr.update(visible=False), None, [stop_generate_btn], queue=False)
def create_video_tab(handle_video_generation_fn):
"""
Create the text-to-video tab interface.
"""
with gr.Tab("π¬ Text-to-Video", id="video"):
with gr.Row():
with gr.Column(scale=2):
# Video output
output_video = gr.Video(
label="Generated Video",
interactive=False,
show_download_button=True,
height=480,
)
status_text = gr.Textbox(
label="Generation Status",
interactive=False,
lines=2
)
with gr.Column(scale=1):
# Model and provider inputs
with gr.Group():
gr.Markdown("**π€ Model & Provider**")
vid_model_name = gr.Dropdown(
choices=SUGGESTED_VIDEO_MODELS,
value=DEFAULT_VIDEO_MODEL,
label="Model",
info="Select or type any model id",
allow_custom_value=True,
interactive=True
)
vid_provider = gr.Dropdown(
choices=IMAGE_PROVIDERS,
value=DEFAULT_PROVIDER,
label="Provider",
interactive=True
)
# Generation parameters
with gr.Group():
gr.Markdown("**π Prompt**")
vid_prompt = gr.Textbox(
value=VIDEO_EXAMPLE_PROMPTS[0],
label="Prompt",
lines=3,
placeholder="Describe the video you want to generate..."
)
with gr.Group():
gr.Markdown("**βοΈ Generation Settings (optional)**")
with gr.Row():
vid_steps = gr.Slider(
minimum=10, maximum=100, value=20, step=1,
label="Inference Steps"
)
vid_guidance = gr.Slider(
minimum=1.0, maximum=20.0, value=7.5, step=0.5,
label="Guidance Scale"
)
vid_seed = gr.Slider(
minimum=-1, maximum=999999, value=-1, step=1,
label="Seed", info="-1 for random"
)
# Generate and Stop buttons
with gr.Row():
generate_btn = gr.Button(
"π¬ Generate Video",
variant="primary",
size="lg",
scale=2
)
stop_generate_btn = gr.Button("βΉ Stop", variant="secondary", visible=False)
# Examples for video generation
with gr.Group():
gr.Markdown("**π Example Prompts**")
gr.Examples(
examples=[[prompt] for prompt in VIDEO_EXAMPLE_PROMPTS],
inputs=vid_prompt
)
# Connect video generation events
generate_btn.click(
fn=lambda: gr.update(visible=True),
inputs=None,
outputs=[stop_generate_btn],
queue=False
)
gen_event = generate_btn.click(
fn=handle_video_generation_fn,
inputs=[
vid_prompt, vid_model_name, vid_provider,
vid_steps, vid_guidance, vid_seed
],
outputs=[output_video, status_text]
)
# Stop current video generation
stop_generate_btn.click(
fn=lambda: gr.update(visible=False),
inputs=None,
outputs=[stop_generate_btn],
cancels=[gen_event],
queue=False
)
# Hide stop after generation completes
gen_event.then(lambda: gr.update(visible=False), None, [stop_generate_btn], queue=False)
def create_image_to_image_examples(img2img_prompt):
"""Create example prompts for image-to-image generation."""
with gr.Group():
gr.Markdown("**π Example Prompts**")
img2img_examples = gr.Examples(
examples=[[prompt] for prompt in IMAGE_TO_IMAGE_EXAMPLE_PROMPTS],
inputs=img2img_prompt
)
def create_tts_examples(tts_text):
"""Create example texts for text-to-speech generation."""
with gr.Group():
gr.Markdown("**π Example Texts**")
tts_examples = gr.Examples(
examples=[[text] for text in TTS_EXAMPLE_TEXTS],
inputs=tts_text
)
def create_chatterbox_examples(tts_audio_url):
"""Create example audio URLs for Chatterbox TTS."""
with gr.Group():
gr.Markdown("**π΅ Example Reference Audio URLs**")
chatterbox_examples = gr.Examples(
examples=[[url] for url in TTS_EXAMPLE_AUDIO_URLS],
inputs=tts_audio_url
)
def create_image_examples(img_prompt):
"""Create example prompts for image generation."""
with gr.Group():
gr.Markdown("**π Example Prompts**")
img_examples = gr.Examples(
examples=[[prompt] for prompt in IMAGE_EXAMPLE_PROMPTS],
inputs=img_prompt
)
def create_main_header():
"""Create the main header for the application."""
gr.Markdown("""
# π AI-Inferoxy AI Hub
A comprehensive AI platform combining chat, image generation, image-to-image, text-to-video, and text-to-speech capabilities with intelligent token management through AI-Inferoxy.
**Features:**
- π¬ **Smart Chat**: Conversational AI with streaming responses
- π¨ **Image Generation**: Text-to-image creation with multiple providers
- πΌοΈ **Image-to-Image**: Transform and modify existing images with AI
- π¬ **Text-to-Video**: Generate short videos from text prompts
- π€ **Text-to-Speech**: Convert text to natural-sounding speech
- π **Intelligent Token Management**: Automatic token rotation and error handling
- π **Multi-Provider Support**: Works with HF Inference, Cerebras, Cohere, Groq, Together, Fal.ai, and more
""")
def create_footer():
"""Render a simple footer with helpful links."""
gr.Markdown(
"""
---
### π Links
- **Project repo**: https://github.com/nazdridoy/inferoxy-hub
- **AIβInferoxy docs**: https://nazdridoy.github.io/ai-inferoxy/
- **License**: https://github.com/nazdridoy/inferoxy-hub/blob/main/LICENSE
"""
)
|