File size: 11,454 Bytes
c1bee18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ddd600
c1bee18
 
 
 
4ddd600
c1bee18
 
 
 
 
 
4ddd600
c1bee18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
"""
UI components for HF-Inferoxy AI Hub.
Contains functions to create different sections of the Gradio interface.
"""

import gradio as gr
from utils import (
    DEFAULT_CHAT_MODEL, DEFAULT_IMAGE_MODEL, DEFAULT_IMAGE_PROVIDER,
    CHAT_CONFIG, IMAGE_CONFIG, IMAGE_PROVIDERS, IMAGE_MODEL_PRESETS,
    IMAGE_EXAMPLE_PROMPTS
)


def create_chat_tab(handle_chat_submit_fn):
    """
    Create the chat tab interface.
    """
    with gr.Tab("πŸ’¬ Chat Assistant", id="chat"):
        # Chat interface at the top - most prominent
        chatbot_display = gr.Chatbot(
            label="Chat",
            type="messages",
            height=800,
            show_copy_button=True
        )
        
        # Chat input
        with gr.Row():
            chat_input = gr.Textbox(
                placeholder="Type your message here...",
                label="Message",
                scale=4,
                container=False
            )
            chat_submit = gr.Button("Send", variant="primary", scale=1)
        
        # Configuration options below the chat
        with gr.Row():
            with gr.Column(scale=1):
                chat_model_name = gr.Textbox(
                    value=DEFAULT_CHAT_MODEL,
                    label="Model Name",
                    placeholder="e.g., openai/gpt-oss-20b or openai/gpt-oss-20b:fireworks-ai"
                )
                chat_system_message = gr.Textbox(
                    value=CHAT_CONFIG["system_message"],
                    label="System Message",
                    lines=2,
                    placeholder="Define the assistant's personality and behavior..."
                )
            
            with gr.Column(scale=1):
                chat_max_tokens = gr.Slider(
                    minimum=1, maximum=4096, value=CHAT_CONFIG["max_tokens"], step=1,
                    label="Max New Tokens"
                )
                chat_temperature = gr.Slider(
                    minimum=0.1, maximum=2.0, value=CHAT_CONFIG["temperature"], step=0.1,
                    label="Temperature"
                )
                chat_top_p = gr.Slider(
                    minimum=0.1, maximum=1.0, value=CHAT_CONFIG["top_p"], step=0.05,
                    label="Top-p (nucleus sampling)"
                )
        
        # Configuration tips below the chat
        create_chat_tips()
        
        # Connect chat events (streaming auto-detected from generator function)
        chat_submit.click(
            fn=handle_chat_submit_fn,
            inputs=[chat_input, chatbot_display, chat_system_message, chat_model_name, 
                   chat_max_tokens, chat_temperature, chat_top_p],
            outputs=[chatbot_display, chat_input]
        )
        
        chat_input.submit(
            fn=handle_chat_submit_fn,
            inputs=[chat_input, chatbot_display, chat_system_message, chat_model_name, 
                   chat_max_tokens, chat_temperature, chat_top_p],
            outputs=[chatbot_display, chat_input]
        )


def create_chat_tips():
    """Create the tips section for the chat tab."""
    with gr.Row():
        with gr.Column():
            gr.Markdown("""
            ### πŸ’‘ Chat Tips
            
            **Model Format:**
            - Single model: `openai/gpt-oss-20b` (uses auto provider)
            - With provider: `openai/gpt-oss-20b:fireworks-ai`
            
            **Popular Models:**
            - `openai/gpt-oss-20b` - Fast general purpose
            - `meta-llama/Llama-2-7b-chat-hf` - Chat optimized
            - `microsoft/DialoGPT-medium` - Conversation
            - `google/flan-t5-base` - Instruction following
            """)
        
        with gr.Column():
            gr.Markdown("""
            ### πŸš€ Popular Providers
            
            - **auto** - Let HF choose best provider (default)
            - **fireworks-ai** - Fast and reliable
            - **cerebras** - High performance
            - **groq** - Ultra-fast inference  
            - **together** - Wide model support
            - **cohere** - Advanced language models
            
            **Examples:**
            - `openai/gpt-oss-20b` (auto provider)
            - `openai/gpt-oss-20b:fireworks-ai` (specific provider)
            """)


def create_image_tab(handle_image_generation_fn):
    """
    Create the image generation tab interface.
    """
    with gr.Tab("🎨 Image Generator", id="image"):
        with gr.Row():
            with gr.Column(scale=2):
                # Image output
                output_image = gr.Image(
                    label="Generated Image", 
                    type="pil",
                    height=600,
                    show_download_button=True
                )
                status_text = gr.Textbox(
                    label="Generation Status", 
                    interactive=False,
                    lines=2
                )
            
            with gr.Column(scale=1):
                # Model and provider inputs
                with gr.Group():
                    gr.Markdown("**πŸ€– Model & Provider**")
                    img_model_name = gr.Textbox(
                        value=DEFAULT_IMAGE_MODEL,
                        label="Model Name",
                        placeholder="e.g., Qwen/Qwen-Image or stabilityai/stable-diffusion-xl-base-1.0"
                    )
                    img_provider = gr.Dropdown(
                        choices=IMAGE_PROVIDERS,
                        value=DEFAULT_IMAGE_PROVIDER,
                        label="Provider",
                        interactive=True
                    )
                
                # Generation parameters
                with gr.Group():
                    gr.Markdown("**πŸ“ Prompts**")
                    img_prompt = gr.Textbox(
                        value=IMAGE_EXAMPLE_PROMPTS[0],  # Use first example as default
                        label="Prompt",
                        lines=3,
                        placeholder="Describe the image you want to generate..."
                    )
                    img_negative_prompt = gr.Textbox(
                        value=IMAGE_CONFIG["negative_prompt"],
                        label="Negative Prompt",
                        lines=2,
                        placeholder="Describe what you DON'T want in the image..."
                    )
                
                with gr.Group():
                    gr.Markdown("**βš™οΈ Generation Settings**")
                    with gr.Row():
                        img_width = gr.Slider(
                            minimum=256, maximum=2048, value=IMAGE_CONFIG["width"], step=64,
                            label="Width", info="Must be divisible by 8"
                        )
                        img_height = gr.Slider(
                            minimum=256, maximum=2048, value=IMAGE_CONFIG["height"], step=64,
                            label="Height", info="Must be divisible by 8"
                        )
                    
                    with gr.Row():
                        img_steps = gr.Slider(
                            minimum=10, maximum=100, value=IMAGE_CONFIG["num_inference_steps"], step=1,
                            label="Inference Steps", info="More steps = better quality"
                        )
                        img_guidance = gr.Slider(
                            minimum=1.0, maximum=20.0, value=IMAGE_CONFIG["guidance_scale"], step=0.5,
                            label="Guidance Scale", info="How closely to follow prompt"
                        )
                    
                    img_seed = gr.Slider(
                        minimum=-1, maximum=999999, value=IMAGE_CONFIG["seed"], step=1,
                        label="Seed", info="-1 for random"
                    )
                
                # Generate button
                generate_btn = gr.Button(
                    "🎨 Generate Image", 
                    variant="primary", 
                    size="lg",
                    scale=2
                )
                
                # Quick model presets
                create_image_presets(img_model_name, img_provider)
        
        # Examples for image generation
        create_image_examples(img_prompt)
        
        # Connect image generation events
        generate_btn.click(
            fn=handle_image_generation_fn,
            inputs=[
                img_prompt, img_model_name, img_provider, img_negative_prompt,
                img_width, img_height, img_steps, img_guidance, img_seed
            ],
            outputs=[output_image, status_text]
        )


def create_image_presets(img_model_name, img_provider):
    """Create quick model presets for image generation."""
    with gr.Group():
        gr.Markdown("**🎯 Popular Presets**")
        
        for name, model, provider in IMAGE_MODEL_PRESETS:
            btn = gr.Button(name, size="sm")
            btn.click(
                lambda m=model, p=provider: (m, p),
                outputs=[img_model_name, img_provider]
            )


def create_image_examples(img_prompt):
    """Create example prompts for image generation."""
    with gr.Group():
        gr.Markdown("**🌟 Example Prompts**")
        img_examples = gr.Examples(
            examples=[[prompt] for prompt in IMAGE_EXAMPLE_PROMPTS],
            inputs=img_prompt
        )


def create_main_header():
    """Create the main header for the application."""
    gr.Markdown("""
    # πŸš€ HF-Inferoxy AI Hub
    
    A comprehensive AI platform combining chat and image generation capabilities with intelligent token management through HF-Inferoxy.
    
    **Features:**
    - πŸ’¬ **Smart Chat**: Conversational AI with streaming responses
    - 🎨 **Image Generation**: Text-to-image creation with multiple providers  
    - πŸ”„ **Intelligent Token Management**: Automatic token rotation and error handling
    - 🌐 **Multi-Provider Support**: Works with HF Inference, Cerebras, Cohere, Groq, Together, Fal.ai, and more
    """)


def create_footer():
    """Create the footer with helpful information."""
    gr.Markdown("""
    ---
    ### πŸ“š How to Use
    
    **Chat Tab:**
    - Enter your message and customize the AI's behavior with system messages
    - Choose models and providers using the format `model:provider` 
    - Adjust temperature for creativity and top-p for response diversity
    
    **Image Tab:**
    - Write detailed prompts describing your desired image
    - Use negative prompts to avoid unwanted elements  
    - Experiment with different models and providers for varied styles
    - Higher inference steps = better quality but slower generation
    
    **Supported Providers:**
    - **fal-ai**: High-quality image generation (default for images)
    - **hf-inference**: Core API with comprehensive model support
    - **cerebras**: High-performance inference 
    - **cohere**: Advanced language models with multilingual support
    - **groq**: Ultra-fast inference, optimized for speed
    - **together**: Collaborative AI hosting, wide model support
    - **nebius**: Cloud-native services with enterprise features
    - **nscale**: Optimized inference performance 
    - **replicate**: Collaborative AI hosting
    
    **Built with ❀️ using [HF-Inferoxy](https://nazdridoy.github.io/hf-inferoxy/) for intelligent token management**
    """)