Spaces:
Build error
Build error
temp
Browse files- app.py +36 -12
- fire_network.py +1 -3
- requirements.txt +1 -0
app.py
CHANGED
|
@@ -1,23 +1,46 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
|
| 3 |
-
|
| 4 |
-
return "Hello " + name + "!!"
|
| 5 |
|
|
|
|
| 6 |
|
| 7 |
-
|
| 8 |
-
net_path = 'fire.pth'
|
| 9 |
|
| 10 |
-
# CPU / GPU
|
| 11 |
-
device = 'cpu'
|
| 12 |
|
| 13 |
-
#
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
# Wrapper
|
| 17 |
def generate_matching_superfeatures(im1, im2, scale=6):
|
| 18 |
|
| 19 |
-
#
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
|
| 23 |
# GRADIO APP
|
|
@@ -31,12 +54,13 @@ iface = gr.Interface(
|
|
| 31 |
inputs=[
|
| 32 |
gr.inputs.Image(shape=(240, 240), type="pil"),
|
| 33 |
gr.inputs.Image(shape=(240, 240), type="pil"),
|
| 34 |
-
gr.inputs.Slider(minimum=1, maximum=7, step=1, default=2, label="Scale")
|
|
|
|
| 35 |
outputs="plot",
|
| 36 |
enable_queue=True,
|
| 37 |
title=title,
|
| 38 |
description=description,
|
| 39 |
article=article,
|
| 40 |
-
examples=[["chateau_1.png", "chateau_2.png", 6]],
|
| 41 |
)
|
| 42 |
iface.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
|
| 3 |
+
import torch
|
|
|
|
| 4 |
|
| 5 |
+
from how.networks import how_net
|
| 6 |
|
| 7 |
+
import fire_network
|
|
|
|
| 8 |
|
|
|
|
|
|
|
| 9 |
|
| 10 |
+
# Possible Scales for multiscale inference
|
| 11 |
+
scales = [2.0, 1.414, 1.0, 0.707, 0.5, 0.353, 0.25]
|
| 12 |
+
infer_opts = {"scales": scales, "features_num": 1000}
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
# Load net
|
| 16 |
+
state = torch.load('fire.pth', map_location='cpu')
|
| 17 |
+
state['net_params']['pretrained'] = None # no need for imagenet pretrained model
|
| 18 |
+
net = fire_network.init_network(**state['net_params']).to(device)
|
| 19 |
+
net.load_state_dict(state['state_dict'])
|
| 20 |
+
|
| 21 |
+
transforms_ = transforms.Compose([
|
| 22 |
+
transforms.Resize(1024),
|
| 23 |
+
transforms.ToTensor(),
|
| 24 |
+
transforms.Normalize(**dict(zip(["mean", "std"], net.runtime['mean_std'])))
|
| 25 |
+
])
|
| 26 |
+
|
| 27 |
|
| 28 |
# Wrapper
|
| 29 |
def generate_matching_superfeatures(im1, im2, scale=6):
|
| 30 |
|
| 31 |
+
# extract features
|
| 32 |
+
with torch.no_grad():
|
| 33 |
+
output1 = net.get_superfeatures(im1.to(device), scales=scales)
|
| 34 |
+
feats1 = output1[0]
|
| 35 |
+
attns1 = output1[1]
|
| 36 |
+
strenghts1 = output1[2]
|
| 37 |
+
|
| 38 |
+
output2 = net.get_superfeatures(im2.to(device), scales=scales)
|
| 39 |
+
feats2 = output2[0]
|
| 40 |
+
attns2 = output2[1]
|
| 41 |
+
strenghts2 = output2[2]
|
| 42 |
+
|
| 43 |
+
|
| 44 |
|
| 45 |
|
| 46 |
# GRADIO APP
|
|
|
|
| 54 |
inputs=[
|
| 55 |
gr.inputs.Image(shape=(240, 240), type="pil"),
|
| 56 |
gr.inputs.Image(shape=(240, 240), type="pil"),
|
| 57 |
+
gr.inputs.Slider(minimum=1, maximum=7, step=1, default=2, label="Scale"),
|
| 58 |
+
gr.inputs.Slider(minimum=1, maximum=255, step=25, default=50, label="Binarizatio Threshold")],
|
| 59 |
outputs="plot",
|
| 60 |
enable_queue=True,
|
| 61 |
title=title,
|
| 62 |
description=description,
|
| 63 |
article=article,
|
| 64 |
+
examples=[["chateau_1.png", "chateau_2.png", 6, 50]],
|
| 65 |
)
|
| 66 |
iface.launch()
|
fire_network.py
CHANGED
|
@@ -6,8 +6,6 @@ import torch
|
|
| 6 |
from torch import nn
|
| 7 |
import torchvision
|
| 8 |
|
| 9 |
-
from cirtorch.networks import imageretrievalnet
|
| 10 |
-
|
| 11 |
from how import layers
|
| 12 |
from how.layers import functional as HF
|
| 13 |
|
|
@@ -103,7 +101,7 @@ def init_network(architecture, pretrained, skip_layer, dim_reduction, lit, runti
|
|
| 103 |
|
| 104 |
if skip_layer > 0:
|
| 105 |
features = features[:-skip_layer]
|
| 106 |
-
backbone_dim =
|
| 107 |
|
| 108 |
att_layer = layers.attention.L2Attention()
|
| 109 |
|
|
|
|
| 6 |
from torch import nn
|
| 7 |
import torchvision
|
| 8 |
|
|
|
|
|
|
|
| 9 |
from how import layers
|
| 10 |
from how.layers import functional as HF
|
| 11 |
|
|
|
|
| 101 |
|
| 102 |
if skip_layer > 0:
|
| 103 |
features = features[:-skip_layer]
|
| 104 |
+
backbone_dim = 2048 // (2 ** skip_layer)
|
| 105 |
|
| 106 |
att_layer = layers.attention.L2Attention()
|
| 107 |
|
requirements.txt
CHANGED
|
@@ -3,3 +3,4 @@ pyaml
|
|
| 3 |
matplotlib
|
| 4 |
torch==1.10.2
|
| 5 |
torchvision==0.11.3
|
|
|
|
|
|
| 3 |
matplotlib
|
| 4 |
torch==1.10.2
|
| 5 |
torchvision==0.11.3
|
| 6 |
+
opencv-python=4.5.5
|