Spaces:
Build error
Build error
temp
Browse files
app.py
CHANGED
|
@@ -115,22 +115,35 @@ def generate_matching_superfeatures(im1, im2, scale_id=6, threshold=50):
|
|
| 115 |
col_ = 255*np.array(colors.to_rgba(col_))[:3]
|
| 116 |
img2rsz[m,n, :] = col_[::-1]
|
| 117 |
fin_img.append(img2rsz)
|
| 118 |
-
|
| 119 |
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
plt.tight_layout()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
# fig.suptitle("Matching SFs", fontsize=16)
|
| 128 |
|
| 129 |
# fig.canvas.draw()
|
| 130 |
# # Now we can save it to a numpy array.
|
| 131 |
# data = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
|
| 132 |
# data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
| 133 |
-
return
|
| 134 |
|
| 135 |
|
| 136 |
# GRADIO APP
|
|
@@ -153,7 +166,7 @@ iface = gr.Interface(
|
|
| 153 |
gr.inputs.Image(shape=(1024, 1024), type="pil"),
|
| 154 |
gr.inputs.Slider(minimum=1, maximum=7, step=1, default=3, label="Scale"),
|
| 155 |
gr.inputs.Slider(minimum=1, maximum=255, step=25, default=100, label="Binarization Threshold")],
|
| 156 |
-
outputs="plot",
|
| 157 |
# outputs=gr.outputs.Image(shape=(1024,2048), type="plot"),
|
| 158 |
title=title,
|
| 159 |
layout="horizontal",
|
|
|
|
| 115 |
col_ = 255*np.array(colors.to_rgba(col_))[:3]
|
| 116 |
img2rsz[m,n, :] = col_[::-1]
|
| 117 |
fin_img.append(img2rsz)
|
|
|
|
| 118 |
|
| 119 |
+
fig1 = plt.figure()
|
| 120 |
+
fig1.imshow(cv2.cvtColor(img1rsz, cv2.COLOR_BGR2RGB))
|
| 121 |
+
ax1 = plt.gca()
|
| 122 |
+
ax1.axis('scaled')
|
| 123 |
+
ax1.axis('off')
|
| 124 |
+
|
| 125 |
+
plt.tight_layout()
|
| 126 |
+
|
| 127 |
+
fig2 = plt.figure()
|
| 128 |
+
fig2.imshow(cv2.cvtColor(img2rsz, cv2.COLOR_BGR2RGB))
|
| 129 |
+
ax2 = plt.gca()
|
| 130 |
+
ax2.axis('scaled')
|
| 131 |
+
ax2.axis('off')
|
| 132 |
+
|
| 133 |
+
# fig = plt.figure()
|
| 134 |
+
# grid = ImageGrid(fig, 111, nrows_ncols=(2, 1), axes_pad=0.1)
|
| 135 |
+
# for ax, img in zip(grid, fin_img):
|
| 136 |
+
# ax.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
| 137 |
+
# ax.axis('scaled')
|
| 138 |
+
# ax.axis('off')
|
| 139 |
+
# plt.tight_layout()
|
| 140 |
# fig.suptitle("Matching SFs", fontsize=16)
|
| 141 |
|
| 142 |
# fig.canvas.draw()
|
| 143 |
# # Now we can save it to a numpy array.
|
| 144 |
# data = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
|
| 145 |
# data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
| 146 |
+
return fig1,fig2
|
| 147 |
|
| 148 |
|
| 149 |
# GRADIO APP
|
|
|
|
| 166 |
gr.inputs.Image(shape=(1024, 1024), type="pil"),
|
| 167 |
gr.inputs.Slider(minimum=1, maximum=7, step=1, default=3, label="Scale"),
|
| 168 |
gr.inputs.Slider(minimum=1, maximum=255, step=25, default=100, label="Binarization Threshold")],
|
| 169 |
+
outputs=["plot", "plot"],
|
| 170 |
# outputs=gr.outputs.Image(shape=(1024,2048), type="plot"),
|
| 171 |
title=title,
|
| 172 |
layout="horizontal",
|