Spaces:
Build error
Build error
temp
Browse files- how/layers/functional.py +11 -11
- how/networks/how_net.py +0 -54
how/layers/functional.py
CHANGED
|
@@ -3,7 +3,7 @@
|
|
| 3 |
import torch
|
| 4 |
import torch.nn.functional as F
|
| 5 |
|
| 6 |
-
import cirtorch.layers.functional as CF
|
| 7 |
|
| 8 |
|
| 9 |
def smoothing_avg_pooling(feats, kernel_size):
|
|
@@ -18,17 +18,17 @@ def smoothing_avg_pooling(feats, kernel_size):
|
|
| 18 |
count_include_pad=False)
|
| 19 |
|
| 20 |
|
| 21 |
-
def weighted_spoc(ms_feats, ms_weights):
|
| 22 |
-
|
| 23 |
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
|
| 33 |
|
| 34 |
def how_select_local(ms_feats, ms_masks, *, scales, features_num):
|
|
|
|
| 3 |
import torch
|
| 4 |
import torch.nn.functional as F
|
| 5 |
|
| 6 |
+
# import cirtorch.layers.functional as CF
|
| 7 |
|
| 8 |
|
| 9 |
def smoothing_avg_pooling(feats, kernel_size):
|
|
|
|
| 18 |
count_include_pad=False)
|
| 19 |
|
| 20 |
|
| 21 |
+
# def weighted_spoc(ms_feats, ms_weights):
|
| 22 |
+
# """Weighted SPoC pooling, summed over scales.
|
| 23 |
|
| 24 |
+
# :param list ms_feats: A list of feature maps, each at a different scale
|
| 25 |
+
# :param list ms_weights: A list of weights, each at a different scale
|
| 26 |
+
# :return torch.Tensor: L2-normalized global descriptor
|
| 27 |
+
# """
|
| 28 |
+
# desc = torch.zeros((1, ms_feats[0].shape[1]), dtype=torch.float32, device=ms_feats[0].device)
|
| 29 |
+
# for feats, weights in zip(ms_feats, ms_weights):
|
| 30 |
+
# desc += (feats * weights).sum((-2, -1)).squeeze()
|
| 31 |
+
# return CF.l2n(desc)
|
| 32 |
|
| 33 |
|
| 34 |
def how_select_local(ms_feats, ms_masks, *, scales, features_num):
|
how/networks/how_net.py
CHANGED
|
@@ -5,12 +5,6 @@ import torch
|
|
| 5 |
import torch.nn as nn
|
| 6 |
import torchvision
|
| 7 |
|
| 8 |
-
from .. import layers
|
| 9 |
-
from ..layers import functional as HF
|
| 10 |
-
from ..utils import io_helpers
|
| 11 |
-
|
| 12 |
-
NUM_WORKERS = 6
|
| 13 |
-
|
| 14 |
|
| 15 |
class HOWNet(nn.Module):
|
| 16 |
"""Network for the HOW method
|
|
@@ -70,7 +64,6 @@ class HOWNet(nn.Module):
|
|
| 70 |
|
| 71 |
|
| 72 |
# Forward
|
| 73 |
-
|
| 74 |
def features_attentions(self, x, *, scales):
|
| 75 |
"""Return a tuple (features, attentions) where each is a list containing requested scales"""
|
| 76 |
feats = []
|
|
@@ -99,50 +92,3 @@ class HOWNet(nn.Module):
|
|
| 99 |
def meta_repr(self):
|
| 100 |
"""Return meta representation"""
|
| 101 |
return str(self)
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
def init_network(architecture, pretrained, skip_layer, dim_reduction, smoothing, runtime):
|
| 105 |
-
"""Initialize HOW network
|
| 106 |
-
|
| 107 |
-
:param str architecture: Network backbone architecture (e.g. resnet18)
|
| 108 |
-
:param bool pretrained: Whether to start with a network pretrained on ImageNet
|
| 109 |
-
:param int skip_layer: How many layers of blocks should be skipped (from the end)
|
| 110 |
-
:param dict dim_reduction: Options for the dimensionality reduction layer
|
| 111 |
-
:param dict smoothing: Options for the smoothing layer
|
| 112 |
-
:param dict runtime: Runtime options to be stored in the network
|
| 113 |
-
:return HOWNet: Initialized network
|
| 114 |
-
"""
|
| 115 |
-
# Take convolutional layers as features, always ends with ReLU to make last activations non-negative
|
| 116 |
-
net_in = getattr(torchvision.models, architecture)(pretrained=pretrained)
|
| 117 |
-
if architecture.startswith('alexnet') or architecture.startswith('vgg'):
|
| 118 |
-
features = list(net_in.features.children())[:-1]
|
| 119 |
-
elif architecture.startswith('resnet'):
|
| 120 |
-
features = list(net_in.children())[:-2]
|
| 121 |
-
elif architecture.startswith('densenet'):
|
| 122 |
-
features = list(net_in.features.children()) + [nn.ReLU(inplace=True)]
|
| 123 |
-
elif architecture.startswith('squeezenet'):
|
| 124 |
-
features = list(net_in.features.children())
|
| 125 |
-
else:
|
| 126 |
-
raise ValueError('Unsupported or unknown architecture: {}!'.format(architecture))
|
| 127 |
-
|
| 128 |
-
if skip_layer > 0:
|
| 129 |
-
features = features[:-skip_layer]
|
| 130 |
-
backbone_dim = 2048 // (2 ** skip_layer)
|
| 131 |
-
|
| 132 |
-
att_layer = layers.attention.L2Attention()
|
| 133 |
-
smooth_layer = None
|
| 134 |
-
if smoothing:
|
| 135 |
-
smooth_layer = layers.pooling.SmoothingAvgPooling(**smoothing)
|
| 136 |
-
reduction_layer = None
|
| 137 |
-
if dim_reduction:
|
| 138 |
-
reduction_layer = layers.dim_reduction.ConvDimReduction(**dim_reduction, input_dim=backbone_dim)
|
| 139 |
-
|
| 140 |
-
meta = {
|
| 141 |
-
"architecture": architecture,
|
| 142 |
-
"backbone_dim": backbone_dim,
|
| 143 |
-
"outputdim": reduction_layer.out_channels if dim_reduction else backbone_dim,
|
| 144 |
-
"corercf_size": 32 // (2 ** skip_layer),
|
| 145 |
-
}
|
| 146 |
-
return HOWNet(nn.Sequential(*features), att_layer, smooth_layer, reduction_layer, meta, runtime)
|
| 147 |
-
|
| 148 |
-
|
|
|
|
| 5 |
import torch.nn as nn
|
| 6 |
import torchvision
|
| 7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
class HOWNet(nn.Module):
|
| 10 |
"""Network for the HOW method
|
|
|
|
| 64 |
|
| 65 |
|
| 66 |
# Forward
|
|
|
|
| 67 |
def features_attentions(self, x, *, scales):
|
| 68 |
"""Return a tuple (features, attentions) where each is a list containing requested scales"""
|
| 69 |
feats = []
|
|
|
|
| 92 |
def meta_repr(self):
|
| 93 |
"""Return meta representation"""
|
| 94 |
return str(self)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|