Spaces:
Build error
Build error
temp
Browse files
app.py
CHANGED
|
@@ -37,13 +37,21 @@ transform = transforms.Compose([
|
|
| 37 |
])
|
| 38 |
|
| 39 |
|
| 40 |
-
#
|
| 41 |
-
sf_idx_ = [55, 14, 5, 4, 52, 57, 40, 9]
|
| 42 |
|
| 43 |
col = plt.get_cmap('tab10')
|
| 44 |
|
| 45 |
-
def generate_matching_superfeatures(im1, im2, scale_id=6, threshold=50):
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
im1_tensor = transform(im1).unsqueeze(0)
|
| 48 |
im2_tensor = transform(im2).unsqueeze(0)
|
| 49 |
|
|
@@ -74,7 +82,7 @@ def generate_matching_superfeatures(im1, im2, scale_id=6, threshold=50):
|
|
| 74 |
att_heat = np.array(attns1[0,i,:,:].numpy(), dtype=np.float32)
|
| 75 |
att_heat = np.uint8(att_heat / np.max(att_heat[:]) * 255.0)
|
| 76 |
att_heat_bin = np.where(att_heat>threshold, 255, 0)
|
| 77 |
-
print(att_heat_bin)
|
| 78 |
all_att_bin1.append(att_heat_bin)
|
| 79 |
|
| 80 |
att_heat = np.array(attns2[0,i,:,:].numpy(), dtype=np.float32)
|
|
@@ -86,7 +94,7 @@ def generate_matching_superfeatures(im1, im2, scale_id=6, threshold=50):
|
|
| 86 |
fin_img = []
|
| 87 |
img1rsz = np.copy(im1_cv)
|
| 88 |
print('im1:', im1.size)
|
| 89 |
-
print(img1rsz.shape)
|
| 90 |
for j, att in enumerate(all_att_bin1):
|
| 91 |
att = cv2.resize(att, im1.size, interpolation=cv2.INTER_NEAREST)
|
| 92 |
# att = cv2.resize(att, imgz[i].shape[:2][::-1], interpolation=cv2.INTER_CUBIC)
|
|
@@ -102,6 +110,8 @@ def generate_matching_superfeatures(im1, im2, scale_id=6, threshold=50):
|
|
| 102 |
fin_img.append(img1rsz)
|
| 103 |
|
| 104 |
img2rsz = np.copy(im2_cv)
|
|
|
|
|
|
|
| 105 |
for j, att in enumerate(all_att_bin2):
|
| 106 |
att = cv2.resize(att, im2.size, interpolation=cv2.INTER_NEAREST)
|
| 107 |
# att = cv2.resize(att, imgz[i].shape[:2][::-1], interpolation=cv2.INTER_CUBIC)
|
|
@@ -116,19 +126,21 @@ def generate_matching_superfeatures(im1, im2, scale_id=6, threshold=50):
|
|
| 116 |
img2rsz[m,n, :] = col_[::-1]
|
| 117 |
fin_img.append(img2rsz)
|
| 118 |
|
| 119 |
-
fig1 = plt.figure()
|
| 120 |
-
|
| 121 |
ax1 = plt.gca()
|
| 122 |
-
ax1.axis('scaled')
|
| 123 |
ax1.axis('off')
|
| 124 |
-
|
| 125 |
plt.tight_layout()
|
|
|
|
| 126 |
|
| 127 |
-
fig2 = plt.figure()
|
| 128 |
-
|
| 129 |
ax2 = plt.gca()
|
| 130 |
-
ax2.axis('scaled')
|
| 131 |
ax2.axis('off')
|
|
|
|
|
|
|
| 132 |
|
| 133 |
# fig = plt.figure()
|
| 134 |
# grid = ImageGrid(fig, 111, nrows_ncols=(2, 1), axes_pad=0.1)
|
|
@@ -143,7 +155,7 @@ def generate_matching_superfeatures(im1, im2, scale_id=6, threshold=50):
|
|
| 143 |
# # Now we can save it to a numpy array.
|
| 144 |
# data = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
|
| 145 |
# data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
| 146 |
-
return fig1,fig2
|
| 147 |
|
| 148 |
|
| 149 |
# GRADIO APP
|
|
@@ -155,25 +167,34 @@ article = "<p style='text-align: center'><a href='https://github.com/naver/fire'
|
|
| 155 |
# css = ".output-image, .input-image {height: 40rem !important; width: 100% !important;}"
|
| 156 |
# css = "@media screen and (max-width: 600px) { .output_image, .input_image {height:20rem !important; width: 100% !important;} }"
|
| 157 |
# css = ".output_image, .input_image {hieght: 1000px !important}"
|
| 158 |
-
css = ".input_image {height: 600px !important; width: 600px !important;}
|
| 159 |
# css = ".output-image, .input-image {height: 40rem !important; width: 100% !important;}"
|
| 160 |
|
| 161 |
|
| 162 |
iface = gr.Interface(
|
| 163 |
fn=generate_matching_superfeatures,
|
| 164 |
inputs=[
|
| 165 |
-
gr.inputs.Image(shape=(1024, 1024), type="pil"),
|
| 166 |
-
gr.inputs.Image(shape=(1024, 1024), type="pil"),
|
| 167 |
-
gr.inputs.
|
| 168 |
-
gr.inputs.
|
| 169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
# outputs=gr.outputs.Image(shape=(1024,2048), type="plot"),
|
| 171 |
title=title,
|
| 172 |
-
theme='
|
| 173 |
layout="horizontal",
|
| 174 |
description=description,
|
| 175 |
article=article,
|
| 176 |
css=css,
|
| 177 |
-
examples=[
|
|
|
|
|
|
|
|
|
|
| 178 |
)
|
| 179 |
iface.launch(enable_queue=True)
|
|
|
|
| 37 |
])
|
| 38 |
|
| 39 |
|
| 40 |
+
# sf_idx_ = [55, 14, 5, 4, 52, 57, 40, 9]
|
|
|
|
| 41 |
|
| 42 |
col = plt.get_cmap('tab10')
|
| 43 |
|
| 44 |
+
def generate_matching_superfeatures(im1, im2, scale_id=6, threshold=50, sf_ids=''):
|
| 45 |
+
print('im1:', im1.size)
|
| 46 |
+
print('im2:', im2.size)
|
| 47 |
+
# which sf
|
| 48 |
+
sf_idx_ = [55, 14, 5, 4, 52, 57, 40, 9]
|
| 49 |
+
if sf_ids.lower().startswith('r'):
|
| 50 |
+
n_sf_ids = int(sf_ids[1:])
|
| 51 |
+
sf_idx_ = np.random.randint(256, size=n_sf_ids)
|
| 52 |
+
elif sf_ids != '':
|
| 53 |
+
sf_idx_ = map(int, sf_ids.strip().split(','))
|
| 54 |
+
|
| 55 |
im1_tensor = transform(im1).unsqueeze(0)
|
| 56 |
im2_tensor = transform(im2).unsqueeze(0)
|
| 57 |
|
|
|
|
| 82 |
att_heat = np.array(attns1[0,i,:,:].numpy(), dtype=np.float32)
|
| 83 |
att_heat = np.uint8(att_heat / np.max(att_heat[:]) * 255.0)
|
| 84 |
att_heat_bin = np.where(att_heat>threshold, 255, 0)
|
| 85 |
+
# print(att_heat_bin)
|
| 86 |
all_att_bin1.append(att_heat_bin)
|
| 87 |
|
| 88 |
att_heat = np.array(attns2[0,i,:,:].numpy(), dtype=np.float32)
|
|
|
|
| 94 |
fin_img = []
|
| 95 |
img1rsz = np.copy(im1_cv)
|
| 96 |
print('im1:', im1.size)
|
| 97 |
+
print('img1rsz:', img1rsz.shape)
|
| 98 |
for j, att in enumerate(all_att_bin1):
|
| 99 |
att = cv2.resize(att, im1.size, interpolation=cv2.INTER_NEAREST)
|
| 100 |
# att = cv2.resize(att, imgz[i].shape[:2][::-1], interpolation=cv2.INTER_CUBIC)
|
|
|
|
| 110 |
fin_img.append(img1rsz)
|
| 111 |
|
| 112 |
img2rsz = np.copy(im2_cv)
|
| 113 |
+
print('im2:', im2.size)
|
| 114 |
+
print('img2rsz:', img2rsz.shape)
|
| 115 |
for j, att in enumerate(all_att_bin2):
|
| 116 |
att = cv2.resize(att, im2.size, interpolation=cv2.INTER_NEAREST)
|
| 117 |
# att = cv2.resize(att, imgz[i].shape[:2][::-1], interpolation=cv2.INTER_CUBIC)
|
|
|
|
| 126 |
img2rsz[m,n, :] = col_[::-1]
|
| 127 |
fin_img.append(img2rsz)
|
| 128 |
|
| 129 |
+
fig1 = plt.figure(1)
|
| 130 |
+
plt.imshow(cv2.cvtColor(img1rsz, cv2.COLOR_BGR2RGB))
|
| 131 |
ax1 = plt.gca()
|
| 132 |
+
# ax1.axis('scaled')
|
| 133 |
ax1.axis('off')
|
|
|
|
| 134 |
plt.tight_layout()
|
| 135 |
+
# fig1.canvas.draw()
|
| 136 |
|
| 137 |
+
fig2 = plt.figure(2)
|
| 138 |
+
plt.imshow(cv2.cvtColor(img2rsz, cv2.COLOR_BGR2RGB))
|
| 139 |
ax2 = plt.gca()
|
| 140 |
+
# ax2.axis('scaled')
|
| 141 |
ax2.axis('off')
|
| 142 |
+
plt.tight_layout()
|
| 143 |
+
# fig2.canvas.draw()
|
| 144 |
|
| 145 |
# fig = plt.figure()
|
| 146 |
# grid = ImageGrid(fig, 111, nrows_ncols=(2, 1), axes_pad=0.1)
|
|
|
|
| 155 |
# # Now we can save it to a numpy array.
|
| 156 |
# data = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
|
| 157 |
# data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
| 158 |
+
return fig1, fig2, ','.join(map(str, sf_idx_))
|
| 159 |
|
| 160 |
|
| 161 |
# GRADIO APP
|
|
|
|
| 167 |
# css = ".output-image, .input-image {height: 40rem !important; width: 100% !important;}"
|
| 168 |
# css = "@media screen and (max-width: 600px) { .output_image, .input_image {height:20rem !important; width: 100% !important;} }"
|
| 169 |
# css = ".output_image, .input_image {hieght: 1000px !important}"
|
| 170 |
+
css = ".input_image, .input_image {height: 600px !important; width: 600px !important;} "
|
| 171 |
# css = ".output-image, .input-image {height: 40rem !important; width: 100% !important;}"
|
| 172 |
|
| 173 |
|
| 174 |
iface = gr.Interface(
|
| 175 |
fn=generate_matching_superfeatures,
|
| 176 |
inputs=[
|
| 177 |
+
# gr.inputs.Image(shape=(1024, 1024), type="pil", label="First Image"),
|
| 178 |
+
# gr.inputs.Image(shape=(1024, 1024), type="pil", label="Second Image"),
|
| 179 |
+
gr.inputs.Image(type="pil", label="First Image"),
|
| 180 |
+
gr.inputs.Image(type="pil", label="Second Image"),
|
| 181 |
+
gr.inputs.Slider(minimum=0, maximum=6, step=1, default=2, label="Scale"),
|
| 182 |
+
gr.inputs.Slider(minimum=1, maximum=255, step=25, default=100, label="Binarization Threshold"),
|
| 183 |
+
gr.inputs.Textbox(lines=1, default="", label="SF IDs to show (comma separated numbers from 0-255; typing 'rX' will return X random SFs", optional=True)],
|
| 184 |
+
outputs=[
|
| 185 |
+
"plot",
|
| 186 |
+
"plot",
|
| 187 |
+
gr.outputs.Textbox(label="SFs")],
|
| 188 |
# outputs=gr.outputs.Image(shape=(1024,2048), type="plot"),
|
| 189 |
title=title,
|
| 190 |
+
theme='peach',
|
| 191 |
layout="horizontal",
|
| 192 |
description=description,
|
| 193 |
article=article,
|
| 194 |
css=css,
|
| 195 |
+
examples=[
|
| 196 |
+
["chateau_1.png", "chateau_2.png", 2, 100, '55,14,5,4,52,57,40,9'],
|
| 197 |
+
["anafi1.jpeg", "anafi2.jpeg", 4, 50, '99,100,142,213,236']
|
| 198 |
+
],
|
| 199 |
)
|
| 200 |
iface.launch(enable_queue=True)
|