first commit
Browse files
sage.py
CHANGED
|
@@ -1,24 +1,44 @@
|
|
| 1 |
|
| 2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
|
|
|
| 4 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 5 |
from langchain_community.document_loaders import PyMuPDFLoader
|
| 6 |
from langchain_community.vectorstores import FAISS
|
| 7 |
from langchain_community.embeddings.fastembed import FastEmbedEmbeddings
|
| 8 |
-
import
|
| 9 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
load_dotenv()
|
| 11 |
|
|
|
|
| 12 |
embed_model = FastEmbedEmbeddings(model_name="snowflake/snowflake-arctic-embed-m")
|
| 13 |
|
| 14 |
-
from groq import Groq
|
| 15 |
-
from langchain_groq import ChatGroq
|
| 16 |
|
| 17 |
|
| 18 |
llm = ChatGroq(temperature=0,
|
| 19 |
model_name="Llama3-8b-8192",
|
| 20 |
api_key=os.getenv("GROQ_API_KEY"),)
|
| 21 |
|
|
|
|
|
|
|
|
|
|
| 22 |
loader = PyMuPDFLoader("https://home.synise.com/HRUtility/Documents/HRA/UmaP/Synise%20Handbook.pdf")
|
| 23 |
documents = loader.load()
|
| 24 |
|
|
@@ -29,21 +49,15 @@ doc_splits = text_splitter.split_documents(documents)
|
|
| 29 |
|
| 30 |
vectorstore = FAISS.from_documents(documents=doc_splits,embedding=embed_model)
|
| 31 |
|
| 32 |
-
|
| 33 |
-
from langchain.retrievers.document_compressors import FlashrankRerank
|
| 34 |
-
|
| 35 |
compressor = FlashrankRerank()
|
| 36 |
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 20})
|
| 37 |
compression_retriever = ContextualCompressionRetriever(
|
| 38 |
base_compressor=compressor, base_retriever=retriever
|
| 39 |
)
|
| 40 |
|
| 41 |
-
from operator import itemgetter
|
| 42 |
-
from langchain.prompts import PromptTemplate
|
| 43 |
-
from langchain.schema.runnable import RunnablePassthrough
|
| 44 |
-
from langchain_core.output_parsers import StrOutputParser
|
| 45 |
-
|
| 46 |
|
|
|
|
| 47 |
RAG_PROMPT_TEMPLATE = """
|
| 48 |
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
|
| 49 |
|
|
@@ -71,260 +85,7 @@ response_chain = (rag_prompt
|
|
| 71 |
|
| 72 |
)
|
| 73 |
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
data = {
|
| 77 |
-
2023: {
|
| 78 |
-
"MAY": {
|
| 79 |
-
"employeeDetails": {
|
| 80 |
-
"employeeId": "E2468",
|
| 81 |
-
"firstName": "Sarah",
|
| 82 |
-
"lastName": "Thompson",
|
| 83 |
-
"designation": "Product Manager"
|
| 84 |
-
},
|
| 85 |
-
"paymentDetails": {
|
| 86 |
-
"year": 2023,
|
| 87 |
-
"month": "JAN",
|
| 88 |
-
"basicSalary": 5500,
|
| 89 |
-
"allowances": [
|
| 90 |
-
{
|
| 91 |
-
"type": "Housing Allowance",
|
| 92 |
-
"amount": 1500
|
| 93 |
-
},
|
| 94 |
-
{
|
| 95 |
-
"type": "Travel Allowance",
|
| 96 |
-
"amount": 800
|
| 97 |
-
}
|
| 98 |
-
],
|
| 99 |
-
"deductions": [
|
| 100 |
-
{
|
| 101 |
-
"type": "Provident Fund",
|
| 102 |
-
"amount": 650
|
| 103 |
-
},
|
| 104 |
-
{
|
| 105 |
-
"type": "Health Insurance",
|
| 106 |
-
"amount": 300
|
| 107 |
-
}
|
| 108 |
-
],
|
| 109 |
-
"taxes": [
|
| 110 |
-
{
|
| 111 |
-
"type": "Income Tax",
|
| 112 |
-
"amount": 1300
|
| 113 |
-
}
|
| 114 |
-
],
|
| 115 |
-
"grossSalary": 7800,
|
| 116 |
-
"totalDeductions": 2250,
|
| 117 |
-
"netSalary": 6650
|
| 118 |
-
},
|
| 119 |
-
"companyDetails": {
|
| 120 |
-
"companyName": "Tech Solutions Ltd.",
|
| 121 |
-
"address": "789 Maple Avenue, City"
|
| 122 |
-
}
|
| 123 |
-
}
|
| 124 |
-
},
|
| 125 |
-
2024: {
|
| 126 |
-
"JAN": {
|
| 127 |
-
"employeeDetails": {
|
| 128 |
-
"employeeId": "E2468",
|
| 129 |
-
"firstName": "Sarah",
|
| 130 |
-
"lastName": "Thompson",
|
| 131 |
-
"designation": "Product Manager"
|
| 132 |
-
},
|
| 133 |
-
"paymentDetails": {
|
| 134 |
-
"year": 2024,
|
| 135 |
-
"month": "JAN",
|
| 136 |
-
"basicSalary": 6500,
|
| 137 |
-
"allowances": [
|
| 138 |
-
{
|
| 139 |
-
"type": "Housing Allowance",
|
| 140 |
-
"amount": 1500
|
| 141 |
-
},
|
| 142 |
-
{
|
| 143 |
-
"type": "Travel Allowance",
|
| 144 |
-
"amount": 800
|
| 145 |
-
}
|
| 146 |
-
],
|
| 147 |
-
"deductions": [
|
| 148 |
-
{
|
| 149 |
-
"type": "Provident Fund",
|
| 150 |
-
"amount": 650
|
| 151 |
-
},
|
| 152 |
-
{
|
| 153 |
-
"type": "Health Insurance",
|
| 154 |
-
"amount": 300
|
| 155 |
-
}
|
| 156 |
-
],
|
| 157 |
-
"taxes": [
|
| 158 |
-
{
|
| 159 |
-
"type": "Income Tax",
|
| 160 |
-
"amount": 1300
|
| 161 |
-
}
|
| 162 |
-
],
|
| 163 |
-
"grossSalary": 8800,
|
| 164 |
-
"totalDeductions": 2250,
|
| 165 |
-
"netSalary": 6550
|
| 166 |
-
},
|
| 167 |
-
"companyDetails": {
|
| 168 |
-
"companyName": "Tech Solutions Ltd.",
|
| 169 |
-
"address": "789 Maple Avenue, City"
|
| 170 |
-
}
|
| 171 |
-
},
|
| 172 |
-
"FEB": {
|
| 173 |
-
"employeeDetails": {
|
| 174 |
-
"employeeId": "E2468",
|
| 175 |
-
"firstName": "Sarah",
|
| 176 |
-
"lastName": "Thompson",
|
| 177 |
-
"designation": "Product Manager"
|
| 178 |
-
},
|
| 179 |
-
"paymentDetails": {
|
| 180 |
-
"year": 2024,
|
| 181 |
-
"month": "FEB",
|
| 182 |
-
"basicSalary": 6500,
|
| 183 |
-
"allowances": [
|
| 184 |
-
{
|
| 185 |
-
"type": "Housing Allowance",
|
| 186 |
-
"amount": 1500
|
| 187 |
-
},
|
| 188 |
-
{
|
| 189 |
-
"type": "Travel Allowance",
|
| 190 |
-
"amount": 800
|
| 191 |
-
}
|
| 192 |
-
],
|
| 193 |
-
"deductions": [
|
| 194 |
-
{
|
| 195 |
-
"type": "Provident Fund",
|
| 196 |
-
"amount": 650
|
| 197 |
-
},
|
| 198 |
-
{
|
| 199 |
-
"type": "Health Insurance",
|
| 200 |
-
"amount": 300
|
| 201 |
-
}
|
| 202 |
-
],
|
| 203 |
-
"taxes": [
|
| 204 |
-
{
|
| 205 |
-
"type": "Income Tax",
|
| 206 |
-
"amount": 1300
|
| 207 |
-
}
|
| 208 |
-
],
|
| 209 |
-
"grossSalary": 8800,
|
| 210 |
-
"totalDeductions": 2250,
|
| 211 |
-
"netSalary": 6550
|
| 212 |
-
},
|
| 213 |
-
"companyDetails": {
|
| 214 |
-
"companyName": "Tech Solutions Ltd.",
|
| 215 |
-
"address": "789 Maple Avenue, City"
|
| 216 |
-
}
|
| 217 |
-
},
|
| 218 |
-
"MAY": {
|
| 219 |
-
"employeeDetails": {
|
| 220 |
-
"employeeId": "E2468",
|
| 221 |
-
"firstName": "Sarah",
|
| 222 |
-
"lastName": "Thompson",
|
| 223 |
-
"designation": "Product Manager"
|
| 224 |
-
},
|
| 225 |
-
"paymentDetails": {
|
| 226 |
-
"year": 2024,
|
| 227 |
-
"month": "MAY",
|
| 228 |
-
"basicSalary": 6500,
|
| 229 |
-
"allowances": [
|
| 230 |
-
{
|
| 231 |
-
"type": "Housing Allowance",
|
| 232 |
-
"amount": 1500
|
| 233 |
-
},
|
| 234 |
-
{
|
| 235 |
-
"type": "Travel Allowance",
|
| 236 |
-
"amount": 800
|
| 237 |
-
}
|
| 238 |
-
],
|
| 239 |
-
"deductions": [
|
| 240 |
-
{
|
| 241 |
-
"type": "Provident Fund",
|
| 242 |
-
"amount": 650
|
| 243 |
-
},
|
| 244 |
-
{
|
| 245 |
-
"type": "Health Insurance",
|
| 246 |
-
"amount": 300
|
| 247 |
-
}
|
| 248 |
-
],
|
| 249 |
-
"taxes": [
|
| 250 |
-
{
|
| 251 |
-
"type": "Income Tax",
|
| 252 |
-
"amount": 1500
|
| 253 |
-
}
|
| 254 |
-
],
|
| 255 |
-
"grossSalary": 8800,
|
| 256 |
-
"totalDeductions": 2450,
|
| 257 |
-
"netSalary": 6350
|
| 258 |
-
},
|
| 259 |
-
"companyDetails": {
|
| 260 |
-
"companyName": "Tech Solutions Ltd.",
|
| 261 |
-
"address": "789 Maple Avenue, City"
|
| 262 |
-
}
|
| 263 |
-
},
|
| 264 |
-
"APR": {
|
| 265 |
-
"employeeDetails": {
|
| 266 |
-
"employeeId": "E2468",
|
| 267 |
-
"firstName": "Sarah",
|
| 268 |
-
"lastName": "Thompson",
|
| 269 |
-
"designation": "Product Manager"
|
| 270 |
-
},
|
| 271 |
-
"paymentDetails": {
|
| 272 |
-
"year": 2024,
|
| 273 |
-
"month": "APR",
|
| 274 |
-
"basicSalary": 6500,
|
| 275 |
-
"allowances": [
|
| 276 |
-
{
|
| 277 |
-
"type": "Housing Allowance",
|
| 278 |
-
"amount": 1500
|
| 279 |
-
},
|
| 280 |
-
{
|
| 281 |
-
"type": "Travel Allowance",
|
| 282 |
-
"amount": 800
|
| 283 |
-
}
|
| 284 |
-
],
|
| 285 |
-
"deductions": [
|
| 286 |
-
{
|
| 287 |
-
"type": "Provident Fund",
|
| 288 |
-
"amount": 650
|
| 289 |
-
},
|
| 290 |
-
{
|
| 291 |
-
"type": "Health Insurance",
|
| 292 |
-
"amount": 300
|
| 293 |
-
}
|
| 294 |
-
],
|
| 295 |
-
"taxes": [
|
| 296 |
-
{
|
| 297 |
-
"type": "Income Tax",
|
| 298 |
-
"amount": 1500
|
| 299 |
-
}
|
| 300 |
-
],
|
| 301 |
-
"grossSalary": 8800,
|
| 302 |
-
"totalDeductions": 2450,
|
| 303 |
-
"netSalary": 6350
|
| 304 |
-
},
|
| 305 |
-
"companyDetails": {
|
| 306 |
-
"companyName": "Tech Solutions Ltd.",
|
| 307 |
-
"address": "789 Maple Avenue, City"
|
| 308 |
-
}
|
| 309 |
-
}
|
| 310 |
-
}
|
| 311 |
-
}
|
| 312 |
-
year= 2024 if year == "CUR" else year
|
| 313 |
-
year= 2023 if year == "PREV" else year
|
| 314 |
-
|
| 315 |
-
month= "MAY" if month == "CUR" else month
|
| 316 |
-
month= "APR" if month == "PREV" else month
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
return data[year][month]
|
| 320 |
-
|
| 321 |
-
# print(dummy_payroll_api_call(1234, 'CUR', 2024))
|
| 322 |
-
|
| 323 |
-
import time
|
| 324 |
-
from langchain.prompts import PromptTemplate
|
| 325 |
-
from langchain_core.output_parsers import JsonOutputParser
|
| 326 |
-
from langchain_core.output_parsers import StrOutputParser
|
| 327 |
-
|
| 328 |
ROUTER_AGENT_PROMPT_TEMPLATE = """
|
| 329 |
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
|
| 330 |
|
|
@@ -348,145 +109,10 @@ router_prompt = PromptTemplate(
|
|
| 348 |
|
| 349 |
router_chain = router_prompt | llm | JsonOutputParser()
|
| 350 |
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
# print(router_chain.invoke({"question":"What is leave policy ?"}))
|
| 354 |
-
|
| 355 |
-
payroll_schema= {
|
| 356 |
-
"$schema": "http://json-schema.org/draft-07/schema#",
|
| 357 |
-
"title": "Monthly Payslip",
|
| 358 |
-
"description": "A schema for a monthly payslip",
|
| 359 |
-
"type": "object",
|
| 360 |
-
"properties": {
|
| 361 |
-
"employeeDetails": {
|
| 362 |
-
"type": "object",
|
| 363 |
-
"properties": {
|
| 364 |
-
"employeeId": {
|
| 365 |
-
"type": "string",
|
| 366 |
-
"description": "Unique identifier for the employee"
|
| 367 |
-
},
|
| 368 |
-
"firstName": {
|
| 369 |
-
"type": "string",
|
| 370 |
-
"description": "First name of the employee"
|
| 371 |
-
},
|
| 372 |
-
"lastName": {
|
| 373 |
-
"type": "string",
|
| 374 |
-
"description": "Last name of the employee"
|
| 375 |
-
},
|
| 376 |
-
"designation": {
|
| 377 |
-
"type": "string",
|
| 378 |
-
"description": "Designation or job title of the employee"
|
| 379 |
-
}
|
| 380 |
-
},
|
| 381 |
-
"required": ["employeeId", "firstName", "lastName", "designation"]
|
| 382 |
-
},
|
| 383 |
-
"paymentDetails": {
|
| 384 |
-
"type": "object",
|
| 385 |
-
"properties": {
|
| 386 |
-
"year": {
|
| 387 |
-
"type": "integer",
|
| 388 |
-
"description": "Year of the pay period"
|
| 389 |
-
},
|
| 390 |
-
"month": {
|
| 391 |
-
"type": "string",
|
| 392 |
-
"enum": ["JAN", "FEB", "MAR", "APR", "MAY", "JUN", "JUL", "AUG", "SEP", "OCT", "NOV", "DEC"],
|
| 393 |
-
"description": "Month of the pay period"
|
| 394 |
-
},
|
| 395 |
-
"basicSalary": {
|
| 396 |
-
"type": "number",
|
| 397 |
-
"description": "Basic salary of the employee"
|
| 398 |
-
},
|
| 399 |
-
"allowances": {
|
| 400 |
-
"type": "array",
|
| 401 |
-
"items": {
|
| 402 |
-
"type": "object",
|
| 403 |
-
"properties": {
|
| 404 |
-
"type": {
|
| 405 |
-
"type": "string",
|
| 406 |
-
"description": "Type of allowance"
|
| 407 |
-
},
|
| 408 |
-
"amount": {
|
| 409 |
-
"type": "number",
|
| 410 |
-
"description": "Amount of the allowance"
|
| 411 |
-
}
|
| 412 |
-
},
|
| 413 |
-
"required": ["type", "amount"]
|
| 414 |
-
}
|
| 415 |
-
},
|
| 416 |
-
"deductions": {
|
| 417 |
-
"type": "array",
|
| 418 |
-
"items": {
|
| 419 |
-
"type": "object",
|
| 420 |
-
"properties": {
|
| 421 |
-
"type": {
|
| 422 |
-
"type": "string",
|
| 423 |
-
"description": "Type of deduction"
|
| 424 |
-
},
|
| 425 |
-
"amount": {
|
| 426 |
-
"type": "number",
|
| 427 |
-
"description": "Amount of the deduction"
|
| 428 |
-
}
|
| 429 |
-
},
|
| 430 |
-
"required": ["type", "amount"]
|
| 431 |
-
}
|
| 432 |
-
},
|
| 433 |
-
"taxes": {
|
| 434 |
-
"type": "array",
|
| 435 |
-
"items": {
|
| 436 |
-
"type": "object",
|
| 437 |
-
"properties": {
|
| 438 |
-
"type": {
|
| 439 |
-
"type": "string",
|
| 440 |
-
"description": "Type of tax"
|
| 441 |
-
},
|
| 442 |
-
"amount": {
|
| 443 |
-
"type": "number",
|
| 444 |
-
"description": "Amount of the tax"
|
| 445 |
-
}
|
| 446 |
-
},
|
| 447 |
-
"required": ["type", "amount"]
|
| 448 |
-
}
|
| 449 |
-
},
|
| 450 |
-
"grossSalary": {
|
| 451 |
-
"type": "number",
|
| 452 |
-
"description": "Gross salary (basic salary + allowances)"
|
| 453 |
-
},
|
| 454 |
-
"totalDeductions": {
|
| 455 |
-
"type": "number",
|
| 456 |
-
"description": "Total deductions (including taxes)"
|
| 457 |
-
},
|
| 458 |
-
"netSalary": {
|
| 459 |
-
"type": "number",
|
| 460 |
-
"description": "Net salary (gross salary - total deductions)"
|
| 461 |
-
}
|
| 462 |
-
},
|
| 463 |
-
"required": ["year", "month", "basicSalary", "allowances", "deductions", "taxes", "grossSalary", "totalDeductions", "netSalary"]
|
| 464 |
-
},
|
| 465 |
-
"companyDetails": {
|
| 466 |
-
"type": "object",
|
| 467 |
-
"properties": {
|
| 468 |
-
"companyName": {
|
| 469 |
-
"type": "string",
|
| 470 |
-
"description": "Name of the company"
|
| 471 |
-
},
|
| 472 |
-
"address": {
|
| 473 |
-
"type": "string",
|
| 474 |
-
"description": "Address of the company"
|
| 475 |
-
}
|
| 476 |
-
},
|
| 477 |
-
"required": ["companyName", "address"]
|
| 478 |
-
}
|
| 479 |
-
},
|
| 480 |
-
"required": ["employeeDetails", "paymentDetails", "companyDetails"]
|
| 481 |
-
}
|
| 482 |
-
|
| 483 |
-
# print(str(payroll_schema))
|
| 484 |
|
| 485 |
-
import time
|
| 486 |
-
from langchain.prompts import PromptTemplate
|
| 487 |
-
from langchain_core.output_parsers import JsonOutputParser
|
| 488 |
-
from langchain_core.output_parsers import StrOutputParser
|
| 489 |
|
|
|
|
| 490 |
FILTER_EXTTRACTION_PROMPT = """<|begin_of_text|><|start_header_id|>system<|end_header_id|>
|
| 491 |
Extract the month and year from a given user question about payroll. Use the following schema instructions to guide your extraction.
|
| 492 |
|
|
@@ -509,12 +135,8 @@ filter_extraction_prompt = PromptTemplate(
|
|
| 509 |
|
| 510 |
fiter_extraction_chain = filter_extraction_prompt | llm | JsonOutputParser()
|
| 511 |
|
| 512 |
-
# print(fiter_extraction_chain.invoke({"question":"What is my salary on 6 2024 ?"}))
|
| 513 |
|
| 514 |
-
|
| 515 |
-
from langchain.prompts import PromptTemplate
|
| 516 |
-
from langchain_core.output_parsers import JsonOutputParser
|
| 517 |
-
from langchain_core.output_parsers import StrOutputParser
|
| 518 |
|
| 519 |
PAYROLL_QA_PROMPT = """<|begin_of_text|><|start_header_id|>system<|end_header_id|>
|
| 520 |
|
|
@@ -536,120 +158,13 @@ payroll_qa_prompt = PromptTemplate(
|
|
| 536 |
template=PAYROLL_QA_PROMPT, input_variables=["question", "data", "schema"]
|
| 537 |
)
|
| 538 |
|
| 539 |
-
|
| 540 |
-
|
| 541 |
-
result = fiter_extraction_chain.invoke({"question":"What is my salary on jan 2024 ?"})
|
| 542 |
-
|
| 543 |
-
result
|
| 544 |
-
|
| 545 |
-
api_result = dummy_payroll_api_call(1234, result["month"], result["year"])
|
| 546 |
-
|
| 547 |
-
api_result
|
| 548 |
-
|
| 549 |
-
payroll_qa_chain.invoke({"question":"What is my salary on jan 2024 ?", "data":api_result, "schema":payroll_schema})
|
| 550 |
-
|
| 551 |
-
|
| 552 |
-
|
| 553 |
-
|
| 554 |
-
### Retrieval Grader
|
| 555 |
-
|
| 556 |
-
from langchain.prompts import PromptTemplate
|
| 557 |
-
from langchain_community.chat_models import ChatOllama
|
| 558 |
-
from langchain_core.output_parsers import JsonOutputParser
|
| 559 |
-
|
| 560 |
-
|
| 561 |
-
RETREIVAL_GRADER_PROMPT = PromptTemplate(
|
| 562 |
-
template="""<|begin_of_text|><|start_header_id|>system<|end_header_id|>
|
| 563 |
-
You are a grader assessing relevance of a retrieved document to a user question. \n
|
| 564 |
-
Here is the retrieved document: \n\n {document} \n\n
|
| 565 |
-
Here is the user question: {question} \n
|
| 566 |
-
If the document contains keywords related to the user question, grade it as relevant. \n
|
| 567 |
-
It does not need to be a stringent test. The goal is to filter out erroneous retrievals. \n
|
| 568 |
-
Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question. \n
|
| 569 |
-
Provide the binary score as a JSON with a single key 'score',
|
| 570 |
-
Do not include any preamble, explanation, or additional text
|
| 571 |
-
<|eot_id|><|start_header_id|>assistant<|end_header_id|>""",
|
| 572 |
-
input_variables=["question", "document"],
|
| 573 |
-
)
|
| 574 |
-
|
| 575 |
-
retrieval_grader = RETREIVAL_GRADER_PROMPT | llm | JsonOutputParser()
|
| 576 |
-
|
| 577 |
-
# question = "agent memory"
|
| 578 |
-
# docs = retriever.get_relevant_documents(question)
|
| 579 |
-
# doc_txt = docs[1].page_content
|
| 580 |
-
# print(retrieval_grader.invoke({"question": question, "document": doc_txt}))
|
| 581 |
-
|
| 582 |
-
|
| 583 |
-
### Hallucination Grader
|
| 584 |
-
|
| 585 |
-
# Prompt
|
| 586 |
-
HALLUCINATION_GRADER_PROMPT = PromptTemplate(
|
| 587 |
-
template="""<|begin_of_text|><|start_header_id|>system<|end_header_id|>
|
| 588 |
-
You are a grader assessing whether an answer is grounded in / supported by a set of facts. \n
|
| 589 |
-
Here are the facts:
|
| 590 |
-
\n ------- \n
|
| 591 |
-
{documents}
|
| 592 |
-
\n ------- \n
|
| 593 |
-
Here is the answer: {answer}
|
| 594 |
-
Give a binary score 'yes' or 'no' score to indicate whether the answer is grounded in / supported by a set of facts. \n
|
| 595 |
-
Provide the binary score as a JSON with a single key 'score'.
|
| 596 |
-
Do not include any preamble, explanation, or additional text
|
| 597 |
-
<|eot_id|><|start_header_id|>assistant<|end_header_id|>""",
|
| 598 |
-
input_variables=["answer", "documents"],
|
| 599 |
-
)
|
| 600 |
-
|
| 601 |
-
hallucination_grader = HALLUCINATION_GRADER_PROMPT | llm | JsonOutputParser()
|
| 602 |
-
# hallucination_grader.invoke({"documents": docs, "generation": generation})
|
| 603 |
-
|
| 604 |
-
|
| 605 |
-
### Answer Grader
|
| 606 |
-
|
| 607 |
-
# Prompt
|
| 608 |
-
ANSWER_GRADER_PROMPT = PromptTemplate(
|
| 609 |
-
template="""<|begin_of_text|><|start_header_id|>system<|end_header_id|>
|
| 610 |
-
You are a grader assessing whether an answer is useful to resolve a question. \n
|
| 611 |
-
Here is the answer:
|
| 612 |
-
\n ------- \n
|
| 613 |
-
{answer}
|
| 614 |
-
\n ------- \n
|
| 615 |
-
Here is the question: {question}
|
| 616 |
-
Give a binary score 'yes' or 'no' to indicate whether the answer is useful to resolve a question. \n
|
| 617 |
-
Provide the binary score as a JSON with a single key 'score'.
|
| 618 |
-
Do not include any preamble, explanation, or additional text
|
| 619 |
-
<|eot_id|><|start_header_id|>assistant<|end_header_id|>""",
|
| 620 |
-
input_variables=["answer", "question"],
|
| 621 |
-
)
|
| 622 |
-
|
| 623 |
-
answer_grader = ANSWER_GRADER_PROMPT | llm | JsonOutputParser()
|
| 624 |
-
|
| 625 |
-
## Question Re-writer
|
| 626 |
-
|
| 627 |
-
# Prompt
|
| 628 |
-
REWRITER_PROMPT = PromptTemplate(
|
| 629 |
-
template="""<|begin_of_text|><|start_header_id|>system<|end_header_id|>
|
| 630 |
-
You a question re-writer that converts an input question to a better version that is optimized \n
|
| 631 |
-
for vectorstore retrieval. Look at the initial and formulate an improved question. \n
|
| 632 |
-
Here is the initial question: \n\n {question}. Improved question with no preamble: \n
|
| 633 |
-
<|eot_id|><|start_header_id|>assistant<|end_header_id|>""",
|
| 634 |
-
input_variables=["answer", "question"],
|
| 635 |
-
)
|
| 636 |
-
|
| 637 |
-
question_rewriter = REWRITER_PROMPT | llm | StrOutputParser()
|
| 638 |
-
# question_rewriter.invoke({"question": question})
|
| 639 |
-
|
| 640 |
-
# answer_grader.invoke({"question": question, "generation": generation})
|
| 641 |
-
|
| 642 |
-
########### Create Nodes and Actions ###########
|
| 643 |
-
from typing_extensions import TypedDict
|
| 644 |
-
from typing import List
|
| 645 |
|
| 646 |
class AgentState(TypedDict):
|
| 647 |
question : str
|
| 648 |
answer : str
|
| 649 |
documents : List[str]
|
| 650 |
|
| 651 |
-
import logging as log
|
| 652 |
-
|
| 653 |
def route_question(state):
|
| 654 |
"""
|
| 655 |
Route question to payroll_agent or policy_agent to retrieve reevant data
|
|
@@ -660,18 +175,16 @@ def route_question(state):
|
|
| 660 |
Returns:
|
| 661 |
str: Next node to call
|
| 662 |
"""
|
| 663 |
-
|
| 664 |
question = state["question"]
|
| 665 |
result = router_chain.invoke({"question": question})
|
| 666 |
|
| 667 |
-
log.debug('Routing to {}....'.format(result["agent"]))
|
| 668 |
-
|
| 669 |
return result["agent"]
|
| 670 |
|
| 671 |
state = AgentState(question="What is my salary on jan 2024 ?", answer="", documents=None)
|
| 672 |
route_question(state)
|
| 673 |
|
| 674 |
-
|
| 675 |
def retrieve(state):
|
| 676 |
"""
|
| 677 |
Retrieve documents from vectorstore
|
|
@@ -709,137 +222,6 @@ def generate(state):
|
|
| 709 |
|
| 710 |
return {"documents": documents, "question": question, "answer": answer}
|
| 711 |
|
| 712 |
-
# state = AgentState(question="What is leave policy?", answer="", documents=[Document(page_content="According to leave policy, there are two types of leaves 1: PL 2: CL")])
|
| 713 |
-
# generate_answer(state)
|
| 714 |
-
|
| 715 |
-
def grade_documents(state):
|
| 716 |
-
"""
|
| 717 |
-
Determines whether the retrieved documents are relevant to the question.
|
| 718 |
-
|
| 719 |
-
Args:
|
| 720 |
-
state (dict): The current graph state
|
| 721 |
-
|
| 722 |
-
Returns:
|
| 723 |
-
state (dict): Updates documents key with only filtered relevant documents
|
| 724 |
-
"""
|
| 725 |
-
|
| 726 |
-
print("---CHECK DOCUMENT RELEVANCE TO QUESTION---")
|
| 727 |
-
question = state["question"]
|
| 728 |
-
documents = state["documents"]
|
| 729 |
-
|
| 730 |
-
# Score each doc
|
| 731 |
-
filtered_docs = []
|
| 732 |
-
for d in documents:
|
| 733 |
-
score = retrieval_grader.invoke(
|
| 734 |
-
{"question": question, "document": d.page_content}
|
| 735 |
-
)
|
| 736 |
-
grade = score["score"]
|
| 737 |
-
if grade == "yes":
|
| 738 |
-
print("---GRADE: DOCUMENT RELEVANT---")
|
| 739 |
-
filtered_docs.append(d)
|
| 740 |
-
else:
|
| 741 |
-
print("---GRADE: DOCUMENT NOT RELEVANT---")
|
| 742 |
-
continue
|
| 743 |
-
return {"documents": filtered_docs, "question": question}
|
| 744 |
-
|
| 745 |
-
def transform_query(state):
|
| 746 |
-
"""
|
| 747 |
-
Transform the query to produce a better question.
|
| 748 |
-
|
| 749 |
-
Args:
|
| 750 |
-
state (dict): The current graph state
|
| 751 |
-
|
| 752 |
-
Returns:
|
| 753 |
-
state (dict): Updates question key with a re-phrased question
|
| 754 |
-
"""
|
| 755 |
-
|
| 756 |
-
print("---TRANSFORM QUERY---")
|
| 757 |
-
question = state["question"]
|
| 758 |
-
documents = state["documents"]
|
| 759 |
-
|
| 760 |
-
# Re-write question
|
| 761 |
-
better_question = question_rewriter.invoke({"question": question})
|
| 762 |
-
return {"documents": documents, "question": better_question}
|
| 763 |
-
|
| 764 |
-
def decide_to_generate(state):
|
| 765 |
-
"""
|
| 766 |
-
Determines whether to generate an answer, or re-generate a question.
|
| 767 |
-
|
| 768 |
-
Args:
|
| 769 |
-
state (dict): The current graph state
|
| 770 |
-
|
| 771 |
-
Returns:
|
| 772 |
-
str: Binary decision for next node to call
|
| 773 |
-
"""
|
| 774 |
-
|
| 775 |
-
print("---ASSESS GRADED DOCUMENTS---")
|
| 776 |
-
question = state["question"]
|
| 777 |
-
filtered_documents = state["documents"]
|
| 778 |
-
|
| 779 |
-
if not filtered_documents:
|
| 780 |
-
# All documents have been filtered check_relevance
|
| 781 |
-
# We will re-generate a new query
|
| 782 |
-
print(
|
| 783 |
-
"---DECISION: ALL DOCUMENTS ARE NOT RELEVANT TO QUESTION, TRANSFORM QUERY---"
|
| 784 |
-
)
|
| 785 |
-
return "transform_query"
|
| 786 |
-
else:
|
| 787 |
-
# We have relevant documents, so generate answer
|
| 788 |
-
print("---DECISION: GENERATE---")
|
| 789 |
-
return "generate"
|
| 790 |
-
|
| 791 |
-
def fallback(state):
|
| 792 |
-
"""
|
| 793 |
-
Fallback to default answer.
|
| 794 |
-
|
| 795 |
-
Args:
|
| 796 |
-
state (dict): The current graph state
|
| 797 |
-
|
| 798 |
-
Returns:
|
| 799 |
-
str: Decision for next node to call
|
| 800 |
-
"""
|
| 801 |
-
|
| 802 |
-
|
| 803 |
-
return {"answer": "Sorry,I don't know the answer to this question."}
|
| 804 |
-
|
| 805 |
-
def grade_generation_v_documents_and_question(state):
|
| 806 |
-
"""
|
| 807 |
-
Determines whether the generation is grounded in the document and answers question.
|
| 808 |
-
|
| 809 |
-
Args:
|
| 810 |
-
state (dict): The current graph state
|
| 811 |
-
|
| 812 |
-
Returns:
|
| 813 |
-
str: Decision for next node to call
|
| 814 |
-
"""
|
| 815 |
-
|
| 816 |
-
print("---CHECK HALLUCINATIONS---")
|
| 817 |
-
question = state["question"]
|
| 818 |
-
documents = state["documents"]
|
| 819 |
-
answer = state["answer"]
|
| 820 |
-
|
| 821 |
-
score = hallucination_grader.invoke(
|
| 822 |
-
{"documents": documents, "answer": answer}
|
| 823 |
-
)
|
| 824 |
-
grade = score["score"]
|
| 825 |
-
|
| 826 |
-
# Check hallucination
|
| 827 |
-
if grade == "yes":
|
| 828 |
-
print("---DECISION: GENERATION IS GROUNDED IN DOCUMENTS---")
|
| 829 |
-
# Check question-answering
|
| 830 |
-
print("---GRADE GENERATION vs QUESTION---")
|
| 831 |
-
score = answer_grader.invoke({"question": question, "answer": answer})
|
| 832 |
-
grade = score["score"]
|
| 833 |
-
if grade == "yes":
|
| 834 |
-
print("---DECISION: GENERATION ADDRESSES QUESTION---")
|
| 835 |
-
return "useful"
|
| 836 |
-
else:
|
| 837 |
-
print("---DECISION: GENERATION DOES NOT ADDRESS QUESTION---")
|
| 838 |
-
return "not useful"
|
| 839 |
-
else:
|
| 840 |
-
print("---DECISION: GENERATION IS NOT GROUNDED IN DOCUMENTS, RE-TRY---")
|
| 841 |
-
return "not supported"
|
| 842 |
-
|
| 843 |
def payroll(state):
|
| 844 |
"""
|
| 845 |
Query payroll api to retrieve payroll data
|
|
@@ -854,7 +236,7 @@ def payroll(state):
|
|
| 854 |
print("---QUERY PAYROLL API---")
|
| 855 |
question = state["question"]
|
| 856 |
payroll_query_filters = fiter_extraction_chain.invoke({"question":question})
|
| 857 |
-
payroll_api_query_results = dummy_payroll_api_call(1234,
|
| 858 |
|
| 859 |
|
| 860 |
context = context = 'PAYROLL DATA SCHEMA: \n {payroll_schema} \n PAYROLL DATA: {payroll_api_query_results}'.format(
|
|
@@ -863,21 +245,13 @@ def payroll(state):
|
|
| 863 |
documents = [Document(page_content=context)]
|
| 864 |
return {"documents": documents, "question": question}
|
| 865 |
|
| 866 |
-
# state = AgentState(question="Tell me salary for Jan 2024?", answer="", documents=None)
|
| 867 |
-
# query_payroll(state)
|
| 868 |
-
|
| 869 |
-
|
| 870 |
########### Build Execution Graph ###########
|
| 871 |
-
from langgraph.graph import END, StateGraph
|
| 872 |
workflow = StateGraph(AgentState)
|
| 873 |
|
| 874 |
# Define the nodes
|
| 875 |
workflow.add_node("payroll", payroll)
|
| 876 |
workflow.add_node("retrieve", retrieve)
|
| 877 |
workflow.add_node("generate", generate)
|
| 878 |
-
# workflow.add_node("grade_documents", grade_documents) # grade documents
|
| 879 |
-
# workflow.add_node("transform_query", transform_query) # transform_query
|
| 880 |
-
# workflow.add_node("fallback", fallback)
|
| 881 |
|
| 882 |
workflow.set_conditional_entry_point(
|
| 883 |
route_question,
|
|
@@ -887,27 +261,7 @@ workflow.set_conditional_entry_point(
|
|
| 887 |
},
|
| 888 |
)
|
| 889 |
workflow.add_edge("payroll", "generate")
|
| 890 |
-
# workflow.add_edge("retrieve", "generate")
|
| 891 |
-
# workflow.add_edge("generate", END)
|
| 892 |
workflow.add_edge("retrieve", "generate")
|
| 893 |
-
# workflow.add_conditional_edges(
|
| 894 |
-
# "grade_documents",
|
| 895 |
-
# decide_to_generate,
|
| 896 |
-
# {
|
| 897 |
-
# "transform_query": "transform_query",
|
| 898 |
-
# "generate": "generate",
|
| 899 |
-
# },
|
| 900 |
-
# )
|
| 901 |
-
# workflow.add_edge("transform_query", "retrieve")
|
| 902 |
-
# workflow.add_conditional_edges(
|
| 903 |
-
# "generate",
|
| 904 |
-
# grade_generation_v_documents_and_question,
|
| 905 |
-
# {
|
| 906 |
-
# "not supported": "generate",
|
| 907 |
-
# "useful": END,
|
| 908 |
-
# "not useful": "fallback",
|
| 909 |
-
# },
|
| 910 |
-
# )
|
| 911 |
workflow.add_edge("generate", END)
|
| 912 |
|
| 913 |
app = workflow.compile()
|
|
|
|
| 1 |
|
| 2 |
+
import os
|
| 3 |
+
import time
|
| 4 |
+
from dotenv import load_dotenv
|
| 5 |
+
from operator import itemgetter
|
| 6 |
+
from typing_extensions import TypedDict
|
| 7 |
+
from typing import List
|
| 8 |
+
|
| 9 |
+
from langchain.prompts import PromptTemplate
|
| 10 |
+
from langchain_core.output_parsers import JsonOutputParser
|
| 11 |
+
from langchain_core.output_parsers import StrOutputParser
|
| 12 |
|
| 13 |
+
from langchain_community.vectorstores import FAISS
|
| 14 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 15 |
from langchain_community.document_loaders import PyMuPDFLoader
|
| 16 |
from langchain_community.vectorstores import FAISS
|
| 17 |
from langchain_community.embeddings.fastembed import FastEmbedEmbeddings
|
| 18 |
+
from langchain.retrievers import ContextualCompressionRetriever
|
| 19 |
+
from langchain.retrievers.document_compressors import FlashrankRerank
|
| 20 |
+
from langchain.schema import Document
|
| 21 |
+
from langgraph.graph import END, StateGraph
|
| 22 |
+
|
| 23 |
+
from groq import Groq
|
| 24 |
+
from langchain_groq import ChatGroq
|
| 25 |
+
|
| 26 |
+
from utils import get_payroll_api_schema, dummy_payroll_api_call
|
| 27 |
+
|
| 28 |
load_dotenv()
|
| 29 |
|
| 30 |
+
# Setup the models
|
| 31 |
embed_model = FastEmbedEmbeddings(model_name="snowflake/snowflake-arctic-embed-m")
|
| 32 |
|
|
|
|
|
|
|
| 33 |
|
| 34 |
|
| 35 |
llm = ChatGroq(temperature=0,
|
| 36 |
model_name="Llama3-8b-8192",
|
| 37 |
api_key=os.getenv("GROQ_API_KEY"),)
|
| 38 |
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
# Load the documents
|
| 42 |
loader = PyMuPDFLoader("https://home.synise.com/HRUtility/Documents/HRA/UmaP/Synise%20Handbook.pdf")
|
| 43 |
documents = loader.load()
|
| 44 |
|
|
|
|
| 49 |
|
| 50 |
vectorstore = FAISS.from_documents(documents=doc_splits,embedding=embed_model)
|
| 51 |
|
| 52 |
+
# Setup the retriever
|
|
|
|
|
|
|
| 53 |
compressor = FlashrankRerank()
|
| 54 |
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 20})
|
| 55 |
compression_retriever = ContextualCompressionRetriever(
|
| 56 |
base_compressor=compressor, base_retriever=retriever
|
| 57 |
)
|
| 58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
+
# Define RAG Chain
|
| 61 |
RAG_PROMPT_TEMPLATE = """
|
| 62 |
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
|
| 63 |
|
|
|
|
| 85 |
|
| 86 |
)
|
| 87 |
|
| 88 |
+
# Setup Router Chain
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
ROUTER_AGENT_PROMPT_TEMPLATE = """
|
| 90 |
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
|
| 91 |
|
|
|
|
| 109 |
|
| 110 |
router_chain = router_prompt | llm | JsonOutputParser()
|
| 111 |
|
| 112 |
+
payroll_schema = get_payroll_api_schema()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
+
# Define Filter Extraction Chain
|
| 116 |
FILTER_EXTTRACTION_PROMPT = """<|begin_of_text|><|start_header_id|>system<|end_header_id|>
|
| 117 |
Extract the month and year from a given user question about payroll. Use the following schema instructions to guide your extraction.
|
| 118 |
|
|
|
|
| 135 |
|
| 136 |
fiter_extraction_chain = filter_extraction_prompt | llm | JsonOutputParser()
|
| 137 |
|
|
|
|
| 138 |
|
| 139 |
+
# Define Payroll QA Chain
|
|
|
|
|
|
|
|
|
|
| 140 |
|
| 141 |
PAYROLL_QA_PROMPT = """<|begin_of_text|><|start_header_id|>system<|end_header_id|>
|
| 142 |
|
|
|
|
| 158 |
template=PAYROLL_QA_PROMPT, input_variables=["question", "data", "schema"]
|
| 159 |
)
|
| 160 |
|
| 161 |
+
########### Create Nodes Actions ###########
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
|
| 163 |
class AgentState(TypedDict):
|
| 164 |
question : str
|
| 165 |
answer : str
|
| 166 |
documents : List[str]
|
| 167 |
|
|
|
|
|
|
|
| 168 |
def route_question(state):
|
| 169 |
"""
|
| 170 |
Route question to payroll_agent or policy_agent to retrieve reevant data
|
|
|
|
| 175 |
Returns:
|
| 176 |
str: Next node to call
|
| 177 |
"""
|
| 178 |
+
print("---ROUTING---")
|
| 179 |
question = state["question"]
|
| 180 |
result = router_chain.invoke({"question": question})
|
| 181 |
|
|
|
|
|
|
|
| 182 |
return result["agent"]
|
| 183 |
|
| 184 |
state = AgentState(question="What is my salary on jan 2024 ?", answer="", documents=None)
|
| 185 |
route_question(state)
|
| 186 |
|
| 187 |
+
|
| 188 |
def retrieve(state):
|
| 189 |
"""
|
| 190 |
Retrieve documents from vectorstore
|
|
|
|
| 222 |
|
| 223 |
return {"documents": documents, "question": question, "answer": answer}
|
| 224 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 225 |
def payroll(state):
|
| 226 |
"""
|
| 227 |
Query payroll api to retrieve payroll data
|
|
|
|
| 236 |
print("---QUERY PAYROLL API---")
|
| 237 |
question = state["question"]
|
| 238 |
payroll_query_filters = fiter_extraction_chain.invoke({"question":question})
|
| 239 |
+
payroll_api_query_results = dummy_payroll_api_call(1234, payroll_query_filters["month"], payroll_query_filters["year"])
|
| 240 |
|
| 241 |
|
| 242 |
context = context = 'PAYROLL DATA SCHEMA: \n {payroll_schema} \n PAYROLL DATA: {payroll_api_query_results}'.format(
|
|
|
|
| 245 |
documents = [Document(page_content=context)]
|
| 246 |
return {"documents": documents, "question": question}
|
| 247 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 248 |
########### Build Execution Graph ###########
|
|
|
|
| 249 |
workflow = StateGraph(AgentState)
|
| 250 |
|
| 251 |
# Define the nodes
|
| 252 |
workflow.add_node("payroll", payroll)
|
| 253 |
workflow.add_node("retrieve", retrieve)
|
| 254 |
workflow.add_node("generate", generate)
|
|
|
|
|
|
|
|
|
|
| 255 |
|
| 256 |
workflow.set_conditional_entry_point(
|
| 257 |
route_question,
|
|
|
|
| 261 |
},
|
| 262 |
)
|
| 263 |
workflow.add_edge("payroll", "generate")
|
|
|
|
|
|
|
| 264 |
workflow.add_edge("retrieve", "generate")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 265 |
workflow.add_edge("generate", END)
|
| 266 |
|
| 267 |
app = workflow.compile()
|
utils.py
ADDED
|
@@ -0,0 +1,376 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
def dummy_payroll_api_call(employee_id, month, year):
|
| 2 |
+
|
| 3 |
+
data = {
|
| 4 |
+
2023: {
|
| 5 |
+
"MAY": {
|
| 6 |
+
"employeeDetails": {
|
| 7 |
+
"employeeId": "E2468",
|
| 8 |
+
"firstName": "Sarah",
|
| 9 |
+
"lastName": "Thompson",
|
| 10 |
+
"designation": "Product Manager"
|
| 11 |
+
},
|
| 12 |
+
"paymentDetails": {
|
| 13 |
+
"year": 2023,
|
| 14 |
+
"month": "JAN",
|
| 15 |
+
"basicSalary": 5500,
|
| 16 |
+
"allowances": [
|
| 17 |
+
{
|
| 18 |
+
"type": "Housing Allowance",
|
| 19 |
+
"amount": 1500
|
| 20 |
+
},
|
| 21 |
+
{
|
| 22 |
+
"type": "Travel Allowance",
|
| 23 |
+
"amount": 800
|
| 24 |
+
}
|
| 25 |
+
],
|
| 26 |
+
"deductions": [
|
| 27 |
+
{
|
| 28 |
+
"type": "Provident Fund",
|
| 29 |
+
"amount": 650
|
| 30 |
+
},
|
| 31 |
+
{
|
| 32 |
+
"type": "Health Insurance",
|
| 33 |
+
"amount": 300
|
| 34 |
+
}
|
| 35 |
+
],
|
| 36 |
+
"taxes": [
|
| 37 |
+
{
|
| 38 |
+
"type": "Income Tax",
|
| 39 |
+
"amount": 1300
|
| 40 |
+
}
|
| 41 |
+
],
|
| 42 |
+
"grossSalary": 7800,
|
| 43 |
+
"totalDeductions": 2250,
|
| 44 |
+
"netSalary": 6650
|
| 45 |
+
},
|
| 46 |
+
"companyDetails": {
|
| 47 |
+
"companyName": "Tech Solutions Ltd.",
|
| 48 |
+
"address": "789 Maple Avenue, City"
|
| 49 |
+
}
|
| 50 |
+
}
|
| 51 |
+
},
|
| 52 |
+
2024: {
|
| 53 |
+
"JAN": {
|
| 54 |
+
"employeeDetails": {
|
| 55 |
+
"employeeId": "E2468",
|
| 56 |
+
"firstName": "Sarah",
|
| 57 |
+
"lastName": "Thompson",
|
| 58 |
+
"designation": "Product Manager"
|
| 59 |
+
},
|
| 60 |
+
"paymentDetails": {
|
| 61 |
+
"year": 2024,
|
| 62 |
+
"month": "JAN",
|
| 63 |
+
"basicSalary": 6500,
|
| 64 |
+
"allowances": [
|
| 65 |
+
{
|
| 66 |
+
"type": "Housing Allowance",
|
| 67 |
+
"amount": 1500
|
| 68 |
+
},
|
| 69 |
+
{
|
| 70 |
+
"type": "Travel Allowance",
|
| 71 |
+
"amount": 800
|
| 72 |
+
}
|
| 73 |
+
],
|
| 74 |
+
"deductions": [
|
| 75 |
+
{
|
| 76 |
+
"type": "Provident Fund",
|
| 77 |
+
"amount": 650
|
| 78 |
+
},
|
| 79 |
+
{
|
| 80 |
+
"type": "Health Insurance",
|
| 81 |
+
"amount": 300
|
| 82 |
+
}
|
| 83 |
+
],
|
| 84 |
+
"taxes": [
|
| 85 |
+
{
|
| 86 |
+
"type": "Income Tax",
|
| 87 |
+
"amount": 1300
|
| 88 |
+
}
|
| 89 |
+
],
|
| 90 |
+
"grossSalary": 8800,
|
| 91 |
+
"totalDeductions": 2250,
|
| 92 |
+
"netSalary": 6550
|
| 93 |
+
},
|
| 94 |
+
"companyDetails": {
|
| 95 |
+
"companyName": "Tech Solutions Ltd.",
|
| 96 |
+
"address": "789 Maple Avenue, City"
|
| 97 |
+
}
|
| 98 |
+
},
|
| 99 |
+
"FEB": {
|
| 100 |
+
"employeeDetails": {
|
| 101 |
+
"employeeId": "E2468",
|
| 102 |
+
"firstName": "Sarah",
|
| 103 |
+
"lastName": "Thompson",
|
| 104 |
+
"designation": "Product Manager"
|
| 105 |
+
},
|
| 106 |
+
"paymentDetails": {
|
| 107 |
+
"year": 2024,
|
| 108 |
+
"month": "FEB",
|
| 109 |
+
"basicSalary": 6500,
|
| 110 |
+
"allowances": [
|
| 111 |
+
{
|
| 112 |
+
"type": "Housing Allowance",
|
| 113 |
+
"amount": 1500
|
| 114 |
+
},
|
| 115 |
+
{
|
| 116 |
+
"type": "Travel Allowance",
|
| 117 |
+
"amount": 800
|
| 118 |
+
}
|
| 119 |
+
],
|
| 120 |
+
"deductions": [
|
| 121 |
+
{
|
| 122 |
+
"type": "Provident Fund",
|
| 123 |
+
"amount": 650
|
| 124 |
+
},
|
| 125 |
+
{
|
| 126 |
+
"type": "Health Insurance",
|
| 127 |
+
"amount": 300
|
| 128 |
+
}
|
| 129 |
+
],
|
| 130 |
+
"taxes": [
|
| 131 |
+
{
|
| 132 |
+
"type": "Income Tax",
|
| 133 |
+
"amount": 1300
|
| 134 |
+
}
|
| 135 |
+
],
|
| 136 |
+
"grossSalary": 8800,
|
| 137 |
+
"totalDeductions": 2250,
|
| 138 |
+
"netSalary": 6550
|
| 139 |
+
},
|
| 140 |
+
"companyDetails": {
|
| 141 |
+
"companyName": "Tech Solutions Ltd.",
|
| 142 |
+
"address": "789 Maple Avenue, City"
|
| 143 |
+
}
|
| 144 |
+
},
|
| 145 |
+
"MAY": {
|
| 146 |
+
"employeeDetails": {
|
| 147 |
+
"employeeId": "E2468",
|
| 148 |
+
"firstName": "Sarah",
|
| 149 |
+
"lastName": "Thompson",
|
| 150 |
+
"designation": "Product Manager"
|
| 151 |
+
},
|
| 152 |
+
"paymentDetails": {
|
| 153 |
+
"year": 2024,
|
| 154 |
+
"month": "MAY",
|
| 155 |
+
"basicSalary": 6500,
|
| 156 |
+
"allowances": [
|
| 157 |
+
{
|
| 158 |
+
"type": "Housing Allowance",
|
| 159 |
+
"amount": 1500
|
| 160 |
+
},
|
| 161 |
+
{
|
| 162 |
+
"type": "Travel Allowance",
|
| 163 |
+
"amount": 800
|
| 164 |
+
}
|
| 165 |
+
],
|
| 166 |
+
"deductions": [
|
| 167 |
+
{
|
| 168 |
+
"type": "Provident Fund",
|
| 169 |
+
"amount": 650
|
| 170 |
+
},
|
| 171 |
+
{
|
| 172 |
+
"type": "Health Insurance",
|
| 173 |
+
"amount": 300
|
| 174 |
+
}
|
| 175 |
+
],
|
| 176 |
+
"taxes": [
|
| 177 |
+
{
|
| 178 |
+
"type": "Income Tax",
|
| 179 |
+
"amount": 1500
|
| 180 |
+
}
|
| 181 |
+
],
|
| 182 |
+
"grossSalary": 8800,
|
| 183 |
+
"totalDeductions": 2450,
|
| 184 |
+
"netSalary": 6350
|
| 185 |
+
},
|
| 186 |
+
"companyDetails": {
|
| 187 |
+
"companyName": "Tech Solutions Ltd.",
|
| 188 |
+
"address": "789 Maple Avenue, City"
|
| 189 |
+
}
|
| 190 |
+
},
|
| 191 |
+
"APR": {
|
| 192 |
+
"employeeDetails": {
|
| 193 |
+
"employeeId": "E2468",
|
| 194 |
+
"firstName": "Sarah",
|
| 195 |
+
"lastName": "Thompson",
|
| 196 |
+
"designation": "Product Manager"
|
| 197 |
+
},
|
| 198 |
+
"paymentDetails": {
|
| 199 |
+
"year": 2024,
|
| 200 |
+
"month": "APR",
|
| 201 |
+
"basicSalary": 6500,
|
| 202 |
+
"allowances": [
|
| 203 |
+
{
|
| 204 |
+
"type": "Housing Allowance",
|
| 205 |
+
"amount": 1500
|
| 206 |
+
},
|
| 207 |
+
{
|
| 208 |
+
"type": "Travel Allowance",
|
| 209 |
+
"amount": 800
|
| 210 |
+
}
|
| 211 |
+
],
|
| 212 |
+
"deductions": [
|
| 213 |
+
{
|
| 214 |
+
"type": "Provident Fund",
|
| 215 |
+
"amount": 650
|
| 216 |
+
},
|
| 217 |
+
{
|
| 218 |
+
"type": "Health Insurance",
|
| 219 |
+
"amount": 300
|
| 220 |
+
}
|
| 221 |
+
],
|
| 222 |
+
"taxes": [
|
| 223 |
+
{
|
| 224 |
+
"type": "Income Tax",
|
| 225 |
+
"amount": 1500
|
| 226 |
+
}
|
| 227 |
+
],
|
| 228 |
+
"grossSalary": 8800,
|
| 229 |
+
"totalDeductions": 2450,
|
| 230 |
+
"netSalary": 6350
|
| 231 |
+
},
|
| 232 |
+
"companyDetails": {
|
| 233 |
+
"companyName": "Tech Solutions Ltd.",
|
| 234 |
+
"address": "789 Maple Avenue, City"
|
| 235 |
+
}
|
| 236 |
+
}
|
| 237 |
+
}
|
| 238 |
+
}
|
| 239 |
+
year= 2024 if year == "CUR" else year
|
| 240 |
+
year= 2023 if year == "PREV" else year
|
| 241 |
+
|
| 242 |
+
month= "MAY" if month == "CUR" else month
|
| 243 |
+
month= "APR" if month == "PREV" else month
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
return data[year][month]
|
| 247 |
+
|
| 248 |
+
def get_payroll_api_schema():
|
| 249 |
+
schema = {
|
| 250 |
+
"$schema": "http://json-schema.org/draft-07/schema#",
|
| 251 |
+
"title": "Monthly Payslip",
|
| 252 |
+
"description": "A schema for a monthly payslip",
|
| 253 |
+
"type": "object",
|
| 254 |
+
"properties": {
|
| 255 |
+
"employeeDetails": {
|
| 256 |
+
"type": "object",
|
| 257 |
+
"properties": {
|
| 258 |
+
"employeeId": {
|
| 259 |
+
"type": "string",
|
| 260 |
+
"description": "Unique identifier for the employee"
|
| 261 |
+
},
|
| 262 |
+
"firstName": {
|
| 263 |
+
"type": "string",
|
| 264 |
+
"description": "First name of the employee"
|
| 265 |
+
},
|
| 266 |
+
"lastName": {
|
| 267 |
+
"type": "string",
|
| 268 |
+
"description": "Last name of the employee"
|
| 269 |
+
},
|
| 270 |
+
"designation": {
|
| 271 |
+
"type": "string",
|
| 272 |
+
"description": "Designation or job title of the employee"
|
| 273 |
+
}
|
| 274 |
+
},
|
| 275 |
+
"required": ["employeeId", "firstName", "lastName", "designation"]
|
| 276 |
+
},
|
| 277 |
+
"paymentDetails": {
|
| 278 |
+
"type": "object",
|
| 279 |
+
"properties": {
|
| 280 |
+
"year": {
|
| 281 |
+
"type": "integer",
|
| 282 |
+
"description": "Year of the pay period"
|
| 283 |
+
},
|
| 284 |
+
"month": {
|
| 285 |
+
"type": "string",
|
| 286 |
+
"enum": ["JAN", "FEB", "MAR", "APR", "MAY", "JUN", "JUL", "AUG", "SEP", "OCT", "NOV", "DEC"],
|
| 287 |
+
"description": "Month of the pay period"
|
| 288 |
+
},
|
| 289 |
+
"basicSalary": {
|
| 290 |
+
"type": "number",
|
| 291 |
+
"description": "Basic salary of the employee"
|
| 292 |
+
},
|
| 293 |
+
"allowances": {
|
| 294 |
+
"type": "array",
|
| 295 |
+
"items": {
|
| 296 |
+
"type": "object",
|
| 297 |
+
"properties": {
|
| 298 |
+
"type": {
|
| 299 |
+
"type": "string",
|
| 300 |
+
"description": "Type of allowance"
|
| 301 |
+
},
|
| 302 |
+
"amount": {
|
| 303 |
+
"type": "number",
|
| 304 |
+
"description": "Amount of the allowance"
|
| 305 |
+
}
|
| 306 |
+
},
|
| 307 |
+
"required": ["type", "amount"]
|
| 308 |
+
}
|
| 309 |
+
},
|
| 310 |
+
"deductions": {
|
| 311 |
+
"type": "array",
|
| 312 |
+
"items": {
|
| 313 |
+
"type": "object",
|
| 314 |
+
"properties": {
|
| 315 |
+
"type": {
|
| 316 |
+
"type": "string",
|
| 317 |
+
"description": "Type of deduction"
|
| 318 |
+
},
|
| 319 |
+
"amount": {
|
| 320 |
+
"type": "number",
|
| 321 |
+
"description": "Amount of the deduction"
|
| 322 |
+
}
|
| 323 |
+
},
|
| 324 |
+
"required": ["type", "amount"]
|
| 325 |
+
}
|
| 326 |
+
},
|
| 327 |
+
"taxes": {
|
| 328 |
+
"type": "array",
|
| 329 |
+
"items": {
|
| 330 |
+
"type": "object",
|
| 331 |
+
"properties": {
|
| 332 |
+
"type": {
|
| 333 |
+
"type": "string",
|
| 334 |
+
"description": "Type of tax"
|
| 335 |
+
},
|
| 336 |
+
"amount": {
|
| 337 |
+
"type": "number",
|
| 338 |
+
"description": "Amount of the tax"
|
| 339 |
+
}
|
| 340 |
+
},
|
| 341 |
+
"required": ["type", "amount"]
|
| 342 |
+
}
|
| 343 |
+
},
|
| 344 |
+
"grossSalary": {
|
| 345 |
+
"type": "number",
|
| 346 |
+
"description": "Gross salary (basic salary + allowances)"
|
| 347 |
+
},
|
| 348 |
+
"totalDeductions": {
|
| 349 |
+
"type": "number",
|
| 350 |
+
"description": "Total deductions (including taxes)"
|
| 351 |
+
},
|
| 352 |
+
"netSalary": {
|
| 353 |
+
"type": "number",
|
| 354 |
+
"description": "Net salary (gross salary - total deductions)"
|
| 355 |
+
}
|
| 356 |
+
},
|
| 357 |
+
"required": ["year", "month", "basicSalary", "allowances", "deductions", "taxes", "grossSalary", "totalDeductions", "netSalary"]
|
| 358 |
+
},
|
| 359 |
+
"companyDetails": {
|
| 360 |
+
"type": "object",
|
| 361 |
+
"properties": {
|
| 362 |
+
"companyName": {
|
| 363 |
+
"type": "string",
|
| 364 |
+
"description": "Name of the company"
|
| 365 |
+
},
|
| 366 |
+
"address": {
|
| 367 |
+
"type": "string",
|
| 368 |
+
"description": "Address of the company"
|
| 369 |
+
}
|
| 370 |
+
},
|
| 371 |
+
"required": ["companyName", "address"]
|
| 372 |
+
}
|
| 373 |
+
},
|
| 374 |
+
"required": ["employeeDetails", "paymentDetails", "companyDetails"]
|
| 375 |
+
}
|
| 376 |
+
return schema
|