first commit
Browse files- chain.py +0 -71
- chainlit.md +2 -2
chain.py
DELETED
|
@@ -1,71 +0,0 @@
|
|
| 1 |
-
# Langchain imports
|
| 2 |
-
from langchain_community.document_loaders import PyMuPDFLoader
|
| 3 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 4 |
-
from langchain_community.vectorstores import Qdrant
|
| 5 |
-
from langchain.prompts import ChatPromptTemplate
|
| 6 |
-
from langchain_openai import ChatOpenAI
|
| 7 |
-
from langchain_openai import OpenAIEmbeddings
|
| 8 |
-
from langchain_core.output_parsers import StrOutputParser
|
| 9 |
-
from langchain.schema.runnable import RunnablePassthrough
|
| 10 |
-
from dotenv import load_dotenv
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
load_dotenv()
|
| 14 |
-
|
| 15 |
-
######################## Build RAG Chain #############################
|
| 16 |
-
######################################################################
|
| 17 |
-
|
| 18 |
-
#### Load Documents
|
| 19 |
-
loader = PyMuPDFLoader(
|
| 20 |
-
"https://d18rn0p25nwr6d.cloudfront.net/CIK-0001326801/c7318154-f6ae-4866-89fa-f0c589f2ee3d.pdf"
|
| 21 |
-
)
|
| 22 |
-
|
| 23 |
-
documents = loader.load()
|
| 24 |
-
|
| 25 |
-
#### Split Documents
|
| 26 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
| 27 |
-
chunk_size = 800,
|
| 28 |
-
chunk_overlap = 100
|
| 29 |
-
)
|
| 30 |
-
|
| 31 |
-
documents = text_splitter.split_documents(documents)
|
| 32 |
-
|
| 33 |
-
embeddings = OpenAIEmbeddings(
|
| 34 |
-
model="text-embedding-3-small"
|
| 35 |
-
)
|
| 36 |
-
|
| 37 |
-
### Create Vector Store
|
| 38 |
-
vector_store = Qdrant.from_documents(
|
| 39 |
-
documents,
|
| 40 |
-
embeddings,
|
| 41 |
-
location=":memory:",
|
| 42 |
-
collection_name="Meta 10k Filings",
|
| 43 |
-
)
|
| 44 |
-
|
| 45 |
-
### Create Prmopt Template
|
| 46 |
-
template = """Answer the question based only on the following context. If you cannot answer the question with the context, please respond with 'I don't know':
|
| 47 |
-
|
| 48 |
-
Context:
|
| 49 |
-
{context}
|
| 50 |
-
|
| 51 |
-
Question:
|
| 52 |
-
{question}
|
| 53 |
-
"""
|
| 54 |
-
prompt = ChatPromptTemplate.from_template(template)
|
| 55 |
-
|
| 56 |
-
def format_docs(docs):
|
| 57 |
-
return "\n\n".join([d.page_content for d in docs])
|
| 58 |
-
|
| 59 |
-
### Setup RAG Chain
|
| 60 |
-
|
| 61 |
-
retriever = vector_store.as_retriever(search_type="similarity_score_threshold",
|
| 62 |
-
search_kwargs={"score_threshold": 0.6, "k":8})
|
| 63 |
-
primary_qa_llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0)
|
| 64 |
-
|
| 65 |
-
rag_chain = (
|
| 66 |
-
{"context": retriever | format_docs, "question": RunnablePassthrough()}
|
| 67 |
-
| prompt
|
| 68 |
-
| primary_qa_llm
|
| 69 |
-
| StrOutputParser()
|
| 70 |
-
|
| 71 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
chainlit.md
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
-
#
|
| 2 |
|
| 3 |
-
|
|
|
|
| 1 |
+
# Sage
|
| 2 |
|
| 3 |
+
SAGE is a digital assistant that helps employees quickly find answers to HR and policy questions.
|