Spaces:
Runtime error
Runtime error
| """Quantum-inspired reasoning implementations.""" | |
| import logging | |
| from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple | |
| import json | |
| from dataclasses import dataclass, field | |
| from enum import Enum | |
| from datetime import datetime | |
| import numpy as np | |
| from collections import defaultdict | |
| from .base import ReasoningStrategy, StrategyResult | |
| class QuantumOperationType(Enum): | |
| """Types of quantum operations.""" | |
| HADAMARD = "hadamard" | |
| CNOT = "cnot" | |
| PHASE = "phase" | |
| MEASURE = "measure" | |
| ENTANGLE = "entangle" | |
| class QuantumState: | |
| """Quantum state with superposition and entanglement.""" | |
| name: str | |
| amplitude: complex | |
| phase: float | |
| entangled_states: List[str] = field(default_factory=list) | |
| timestamp: str = field(default_factory=lambda: datetime.now().isoformat()) | |
| class QuantumOperation: | |
| """Quantum operation applied to states.""" | |
| type: QuantumOperationType | |
| target_states: List[str] | |
| parameters: Dict[str, Any] | |
| timestamp: str = field(default_factory=lambda: datetime.now().isoformat()) | |
| class QuantumMeasurement: | |
| """Result of quantum measurement.""" | |
| state: str | |
| probability: float | |
| outcome: Any | |
| timestamp: str = field(default_factory=lambda: datetime.now().isoformat()) | |
| class QuantumStrategy(ReasoningStrategy): | |
| """ | |
| Advanced quantum reasoning that: | |
| 1. Creates quantum states | |
| 2. Applies quantum operations | |
| 3. Measures outcomes | |
| 4. Handles superposition | |
| 5. Models entanglement | |
| """ | |
| def __init__(self, config: Optional[Dict[str, Any]] = None): | |
| """Initialize quantum reasoning.""" | |
| super().__init__() | |
| self.config = config or {} | |
| # Standard reasoning parameters | |
| self.min_confidence = self.config.get('min_confidence', 0.7) | |
| # Configure quantum parameters | |
| self.num_qubits = self.config.get('num_qubits', 3) | |
| self.measurement_threshold = self.config.get('measurement_threshold', 0.1) | |
| self.decoherence_rate = self.config.get('decoherence_rate', 0.01) | |
| # Performance metrics | |
| self.performance_metrics = { | |
| 'states_created': 0, | |
| 'operations_applied': 0, | |
| 'measurements_made': 0, | |
| 'successful_operations': 0, | |
| 'failed_operations': 0, | |
| 'avg_state_fidelity': 0.0, | |
| 'operation_distribution': defaultdict(int), | |
| 'measurement_distribution': defaultdict(float), | |
| 'total_qubits_used': 0, | |
| 'total_entanglements': 0 | |
| } | |
| async def reason( | |
| self, | |
| query: str, | |
| context: Dict[str, Any] | |
| ) -> StrategyResult: | |
| """ | |
| Apply quantum reasoning to analyze the query. | |
| Args: | |
| query: The query to reason about | |
| context: Additional context and parameters | |
| Returns: | |
| StrategyResult containing the reasoning output and metadata | |
| """ | |
| try: | |
| # Initialize quantum states | |
| states = await self._initialize_states(query, context) | |
| self.performance_metrics['states_created'] = len(states) | |
| self.performance_metrics['total_qubits_used'] = sum( | |
| len(s.entangled_states) + 1 for s in states | |
| ) | |
| # Apply quantum operations | |
| operations = await self._apply_operations(states, context) | |
| self.performance_metrics['operations_applied'] = len(operations) | |
| # Update operation distribution | |
| for op in operations: | |
| self.performance_metrics['operation_distribution'][op.type.value] += 1 | |
| # Perform measurements | |
| measurements = await self._measure_states(states, context) | |
| self.performance_metrics['measurements_made'] = len(measurements) | |
| # Update measurement distribution | |
| for m in measurements: | |
| self.performance_metrics['measurement_distribution'][m.state] = m.probability | |
| # Analyze results | |
| result = await self._analyze_results(measurements, context) | |
| # Build reasoning trace | |
| reasoning_trace = self._build_reasoning_trace( | |
| states, operations, measurements, result | |
| ) | |
| # Calculate confidence | |
| confidence = self._calculate_confidence(measurements) | |
| if confidence >= self.min_confidence: | |
| return StrategyResult( | |
| strategy_type="quantum", | |
| success=True, | |
| answer=result.get('conclusion'), | |
| confidence=confidence, | |
| reasoning_trace=reasoning_trace, | |
| metadata={ | |
| 'num_states': len(states), | |
| 'num_operations': len(operations), | |
| 'num_measurements': len(measurements), | |
| 'quantum_parameters': { | |
| 'num_qubits': self.num_qubits, | |
| 'decoherence_rate': self.decoherence_rate | |
| } | |
| }, | |
| performance_metrics=self.performance_metrics | |
| ) | |
| return StrategyResult( | |
| strategy_type="quantum", | |
| success=False, | |
| answer=None, | |
| confidence=confidence, | |
| reasoning_trace=reasoning_trace, | |
| metadata={'error': 'Insufficient confidence in results'}, | |
| performance_metrics=self.performance_metrics | |
| ) | |
| except Exception as e: | |
| logging.error(f"Quantum reasoning error: {str(e)}") | |
| return StrategyResult( | |
| strategy_type="quantum", | |
| success=False, | |
| answer=None, | |
| confidence=0.0, | |
| reasoning_trace=[{ | |
| 'step': 'error', | |
| 'error': str(e), | |
| 'timestamp': datetime.now().isoformat() | |
| }], | |
| metadata={'error': str(e)}, | |
| performance_metrics=self.performance_metrics | |
| ) | |
| async def _initialize_states( | |
| self, | |
| query: str, | |
| context: Dict[str, Any] | |
| ) -> List[QuantumState]: | |
| """Initialize quantum states from query.""" | |
| states = [] | |
| # Create initial state | |
| initial_state = QuantumState( | |
| name="initial", | |
| amplitude=complex(1.0, 0.0), | |
| phase=0.0 | |
| ) | |
| states.append(initial_state) | |
| # Create superposition states | |
| for i in range(self.num_qubits - 1): | |
| state = QuantumState( | |
| name=f"superposition_{i}", | |
| amplitude=complex(1.0 / np.sqrt(2), 0.0), | |
| phase=np.pi / 2, | |
| entangled_states=[initial_state.name] | |
| ) | |
| states.append(state) | |
| self.performance_metrics['total_entanglements'] += 1 | |
| return states | |
| async def _apply_operations( | |
| self, | |
| states: List[QuantumState], | |
| context: Dict[str, Any] | |
| ) -> List[QuantumOperation]: | |
| """Apply quantum operations to states.""" | |
| operations = [] | |
| for state in states: | |
| # Apply Hadamard gate | |
| operations.append(QuantumOperation( | |
| type=QuantumOperationType.HADAMARD, | |
| target_states=[state.name], | |
| parameters={'angle': np.pi / 2} | |
| )) | |
| # Apply CNOT if entangled | |
| if state.entangled_states: | |
| operations.append(QuantumOperation( | |
| type=QuantumOperationType.CNOT, | |
| target_states=[state.name] + state.entangled_states, | |
| parameters={} | |
| )) | |
| # Apply phase rotation | |
| operations.append(QuantumOperation( | |
| type=QuantumOperationType.PHASE, | |
| target_states=[state.name], | |
| parameters={'phase': state.phase} | |
| )) | |
| # Track success/failure | |
| success = np.random.random() > self.decoherence_rate | |
| if success: | |
| self.performance_metrics['successful_operations'] += 1 | |
| else: | |
| self.performance_metrics['failed_operations'] += 1 | |
| return operations | |
| async def _measure_states( | |
| self, | |
| states: List[QuantumState], | |
| context: Dict[str, Any] | |
| ) -> List[QuantumMeasurement]: | |
| """Measure quantum states.""" | |
| measurements = [] | |
| for state in states: | |
| # Calculate measurement probability | |
| probability = abs(state.amplitude) ** 2 | |
| # Apply measurement threshold | |
| if probability > self.measurement_threshold: | |
| measurements.append(QuantumMeasurement( | |
| state=state.name, | |
| probability=probability, | |
| outcome=1 if probability > 0.5 else 0 | |
| )) | |
| return measurements | |
| async def _analyze_results( | |
| self, | |
| measurements: List[QuantumMeasurement], | |
| context: Dict[str, Any] | |
| ) -> Dict[str, Any]: | |
| """Analyze measurement results.""" | |
| if not measurements: | |
| return {'conclusion': None, 'confidence': 0.0} | |
| # Calculate weighted outcome | |
| total_probability = sum(m.probability for m in measurements) | |
| weighted_outcome = sum( | |
| m.probability * m.outcome for m in measurements | |
| ) / total_probability if total_probability > 0 else 0 | |
| return { | |
| 'conclusion': f"Quantum analysis suggests outcome: {weighted_outcome:.2f}", | |
| 'confidence': total_probability / len(measurements) | |
| } | |
| def _calculate_confidence( | |
| self, | |
| measurements: List[QuantumMeasurement] | |
| ) -> float: | |
| """Calculate overall confidence score.""" | |
| if not measurements: | |
| return 0.0 | |
| # Base confidence from measurements | |
| confidence = sum(m.probability for m in measurements) / len(measurements) | |
| # Adjust for decoherence | |
| confidence *= (1 - self.decoherence_rate) | |
| # Adjust for operation success rate | |
| total_ops = ( | |
| self.performance_metrics['successful_operations'] + | |
| self.performance_metrics['failed_operations'] | |
| ) | |
| if total_ops > 0: | |
| success_rate = ( | |
| self.performance_metrics['successful_operations'] / total_ops | |
| ) | |
| confidence *= success_rate | |
| return min(confidence, 1.0) | |
| def _build_reasoning_trace( | |
| self, | |
| states: List[QuantumState], | |
| operations: List[QuantumOperation], | |
| measurements: List[QuantumMeasurement], | |
| result: Dict[str, Any] | |
| ) -> List[Dict[str, Any]]: | |
| """Build the reasoning trace for quantum processing.""" | |
| trace = [] | |
| # State initialization step | |
| trace.append({ | |
| 'step': 'state_initialization', | |
| 'states': [ | |
| { | |
| 'name': s.name, | |
| 'amplitude': abs(s.amplitude), | |
| 'phase': s.phase, | |
| 'entangled': len(s.entangled_states) | |
| } | |
| for s in states | |
| ], | |
| 'timestamp': datetime.now().isoformat() | |
| }) | |
| # Operation application step | |
| trace.append({ | |
| 'step': 'operation_application', | |
| 'operations': [ | |
| { | |
| 'type': o.type.value, | |
| 'targets': o.target_states, | |
| 'parameters': o.parameters | |
| } | |
| for o in operations | |
| ], | |
| 'timestamp': datetime.now().isoformat() | |
| }) | |
| # Measurement step | |
| trace.append({ | |
| 'step': 'measurement', | |
| 'measurements': [ | |
| { | |
| 'state': m.state, | |
| 'probability': m.probability, | |
| 'outcome': m.outcome | |
| } | |
| for m in measurements | |
| ], | |
| 'timestamp': datetime.now().isoformat() | |
| }) | |
| # Result analysis step | |
| trace.append({ | |
| 'step': 'result_analysis', | |
| 'result': result, | |
| 'timestamp': datetime.now().isoformat() | |
| }) | |
| return trace | |
| class QuantumInspiredStrategy(ReasoningStrategy): | |
| """Implements Quantum-Inspired reasoning.""" | |
| async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: | |
| try: | |
| # Create a clean context for serialization | |
| clean_context = {k: v for k, v in context.items() if k != "groq_api"} | |
| prompt = f""" | |
| You are a meta-learning reasoning system that adapts its approach based on problem characteristics. | |
| Problem Type: | |
| Query: {query} | |
| Context: {json.dumps(clean_context)} | |
| Analyze this problem using meta-learning principles. Structure your response EXACTLY as follows: | |
| PROBLEM ANALYSIS: | |
| - [First key aspect or complexity factor] | |
| - [Second key aspect or complexity factor] | |
| - [Third key aspect or complexity factor] | |
| SOLUTION PATHS: | |
| - Path 1: [Specific solution approach] | |
| - Path 2: [Alternative solution approach] | |
| - Path 3: [Another alternative approach] | |
| META INSIGHTS: | |
| - Learning 1: [Key insight about the problem space] | |
| - Learning 2: [Key insight about solution approaches] | |
| - Learning 3: [Key insight about trade-offs] | |
| CONCLUSION: | |
| [Final synthesized solution incorporating meta-learnings] | |
| """ | |
| response = await context["groq_api"].predict(prompt) | |
| if not response["success"]: | |
| return response | |
| # Parse response into components | |
| lines = response["answer"].split("\n") | |
| problem_analysis = [] | |
| solution_paths = [] | |
| meta_insights = [] | |
| conclusion = "" | |
| section = None | |
| for line in lines: | |
| line = line.strip() | |
| if not line: | |
| continue | |
| if "PROBLEM ANALYSIS:" in line: | |
| section = "analysis" | |
| elif "SOLUTION PATHS:" in line: | |
| section = "paths" | |
| elif "META INSIGHTS:" in line: | |
| section = "insights" | |
| elif "CONCLUSION:" in line: | |
| section = "conclusion" | |
| elif line.startswith("-"): | |
| content = line.lstrip("- ").strip() | |
| if section == "analysis": | |
| problem_analysis.append(content) | |
| elif section == "paths": | |
| solution_paths.append(content) | |
| elif section == "insights": | |
| meta_insights.append(content) | |
| elif section == "conclusion": | |
| conclusion += line + " " | |
| return { | |
| "success": True, | |
| "problem_analysis": problem_analysis, | |
| "solution_paths": solution_paths, | |
| "meta_insights": meta_insights, | |
| "conclusion": conclusion.strip(), | |
| # Add standard fields for compatibility | |
| "reasoning_path": problem_analysis + solution_paths + meta_insights, | |
| "conclusion": conclusion.strip() | |
| } | |
| except Exception as e: | |
| return {"success": False, "error": str(e)} | |