Update app.py
Browse files
app.py
CHANGED
|
@@ -2,17 +2,7 @@ import gradio as gr
|
|
| 2 |
import numpy as np
|
| 3 |
import tensorflow as tf
|
| 4 |
import PIL
|
| 5 |
-
import os
|
| 6 |
|
| 7 |
-
'''
|
| 8 |
-
def sepia(input_img):
|
| 9 |
-
sepia_filter = np.array([[.393, .769, .189],
|
| 10 |
-
[.349, .686, .168],
|
| 11 |
-
[.272, .534, .131]])
|
| 12 |
-
sepia_img = input_img.dot(sepia_filter.T)
|
| 13 |
-
sepia_img /= sepia_img.max()
|
| 14 |
-
return sepia_img
|
| 15 |
-
'''
|
| 16 |
|
| 17 |
def normalize_img(img):
|
| 18 |
img = tf.cast(img, dtype=tf.float32)
|
|
@@ -29,15 +19,6 @@ def predict_and_save(img, generator_model):
|
|
| 29 |
def run(image_path):
|
| 30 |
model = tf.keras.models.load_model('pretrained')
|
| 31 |
print("Model loaded")
|
| 32 |
-
'''
|
| 33 |
-
img = tf.keras.preprocessing.image.load_img(
|
| 34 |
-
image_path, target_size=(256, 256)
|
| 35 |
-
)
|
| 36 |
-
|
| 37 |
-
img_array = tf.keras.preprocessing.image.img_to_array(img)
|
| 38 |
-
img_array = tf.expand_dims(img_array, 0)
|
| 39 |
-
'''
|
| 40 |
-
#predict_and_save(img_array, model)
|
| 41 |
img_array = tf.expand_dims(image_path, 0)
|
| 42 |
im = predict_and_save(img_array, model)
|
| 43 |
print("Prediction Done")
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
import tensorflow as tf
|
| 4 |
import PIL
|
|
|
|
| 5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
def normalize_img(img):
|
| 8 |
img = tf.cast(img, dtype=tf.float32)
|
|
|
|
| 19 |
def run(image_path):
|
| 20 |
model = tf.keras.models.load_model('pretrained')
|
| 21 |
print("Model loaded")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
img_array = tf.expand_dims(image_path, 0)
|
| 23 |
im = predict_and_save(img_array, model)
|
| 24 |
print("Prediction Done")
|