Spaces:
Sleeping
Sleeping
Commit
·
6337bb1
1
Parent(s):
2e85e33
Initial commit
Browse files- app.py +48 -0
- requirements.txt +4 -0
app.py
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
from transformers import AutoModelForSequenceClassification
|
| 5 |
+
|
| 6 |
+
# Load ONLY the model, NOT the tokenizer
|
| 7 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
| 8 |
+
"Kevintu/Engessay_grading_ML")
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def process_embeddings(embeddings_array):
|
| 12 |
+
# Convert the received embeddings to the format expected by the model
|
| 13 |
+
embeddings_tensor = torch.tensor(embeddings_array)
|
| 14 |
+
|
| 15 |
+
# Process embeddings with the model
|
| 16 |
+
model.eval()
|
| 17 |
+
with torch.no_grad():
|
| 18 |
+
# Create a dict with the expected input format
|
| 19 |
+
model_inputs = {
|
| 20 |
+
'input_ids': None, # Not needed since we're using embeddings directly
|
| 21 |
+
'attention_mask': None, # Not needed for this use case
|
| 22 |
+
'inputs_embeds': embeddings_tensor # Pass embeddings directly
|
| 23 |
+
}
|
| 24 |
+
outputs = model(**model_inputs)
|
| 25 |
+
|
| 26 |
+
predictions = outputs.logits.squeeze()
|
| 27 |
+
|
| 28 |
+
item_names = ["cohesion", "syntax", "vocabulary",
|
| 29 |
+
"phraseology", "grammar", "conventions"]
|
| 30 |
+
scaled_scores = 2.25 * predictions.numpy() - 1.25
|
| 31 |
+
rounded_scores = [round(score * 2) / 2 for score in scaled_scores]
|
| 32 |
+
|
| 33 |
+
results = {item: f"{score:.1f}" for item,
|
| 34 |
+
score in zip(item_names, rounded_scores)}
|
| 35 |
+
return results
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
# Create Gradio interface for embeddings input
|
| 39 |
+
demo = gr.Interface(
|
| 40 |
+
fn=process_embeddings,
|
| 41 |
+
inputs=gr.JSON(label="Embeddings"),
|
| 42 |
+
outputs=gr.JSON(label="Scores"),
|
| 43 |
+
title="Essay Grading API (Embeddings Only)",
|
| 44 |
+
description="Grade essays based on precomputed embeddings"
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
demo.queue()
|
| 48 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio>=3.50.2
|
| 2 |
+
torch>=2.0.0
|
| 3 |
+
transformers>=4.30.0
|
| 4 |
+
numpy>=1.24.0
|