multimodalart's picture
Update app.py
bfc6564 verified
raw
history blame
11 kB
import os
if os.getcwd() != '/home/user/app':
os.chdir('/home/user/app')
import sys
import subprocess
import asyncio
from typing import Sequence, Mapping, Any, Union
print("Importing ComfyUI's main.py for setup...")
import main
print("ComfyUI main imported.")
import torch
import gradio as gr
from huggingface_hub import hf_hub_download
from comfy import model_management
import spaces
from PIL import Image
import random
import nodes # Import nodes after main has set everything up
# --- Manually trigger the node initialization ---
# This step is normally done inside main.start_comfyui(), but we do it here.
# It loads all built-in, extra, and custom nodes into the NODE_CLASS_MAPPINGS.
print("Initializing ComfyUI nodes...")
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
loop.run_until_complete(nodes.init_extra_nodes())
print("Nodes initialized.")
# --- Helper function from the original script ---
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
try:
return obj[index]
except KeyError:
return obj["result"][index]
# --- Model Downloads ---
print("Downloading models from Hugging Face Hub...")
hf_hub_download(repo_id="Comfy-Org/Wan_2.1_ComfyUI_repackaged", filename="split_files/text_encoders/umt5_xxl_fp8_e4m3fn_scaled.safensors", local_dir="models/text_encoders")
hf_hub_download(repo_id="Comfy-Org/Wan_2.2_ComfyUI_Repackaged", filename="split_files/diffusion_models/wan2.2_i2v_low_noise_14B_fp8_scaled.safensors", local_dir="models/diffusion_models")
hf_hub_download(repo_id="Comfy-Org/Wan_2.2_ComfyUI_Repackaged", filename="split_files/diffusion_models/wan2.2_i2v_high_noise_14B_fp8_scaled.safetensors", local_dir="models/diffusion_models")
hf_hub_download(repo_id="Comfy-Org/Wan_2.1_ComfyUI_repackaged", filename="split_files/vae/wan_2.1_vae.safetensors", local_dir="models/vae")
hf_hub_download(repo_id="Comfy-Org/Wan_2.1_ComfyUI_repackaged", filename="split_files/clip_vision/clip_vision_h.safetensors", local_dir="models/clip_vision")
hf_hub_download(repo_id="Kijai/WanVideo_comfy", filename="Wan22-Lightning/Wan2.2-Lightning_I2V-A14B-4steps-lora_HIGH_fp16.safetensors", local_dir="models/loras")
hf_hub_download(repo_id="Kijai/WanVideo_comfy", filename="Wan22-Lightning/Wan2.2-Lightning_I2V-A14B-4steps-lora_LOW_fp16.safetensors", local_dir="models/loras")
print("Downloads complete.")
# --- ZeroGPU: Pre-load models and instantiate nodes globally ---
# This part will now work because NODE_CLASS_MAPPINGS is correctly populated.
cliploader = nodes.NODE_CLASS_MAPPINGS["CLIPLoader"]()
cliptextencode = nodes.NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
unetloader = nodes.NODE_CLASS_MAPPINGS["UNETLoader"]()
vaeloader = nodes.NODE_CLASS_MAPPINGS["VAELoader"]()
clipvisionloader = nodes.NODE_CLASS_MAPPINGS["CLIPVisionLoader"]()
loadimage = nodes.NODE_CLASS_MAPPINGS["LoadImage"]()
clipvisionencode = nodes.NODE_CLASS_MAPPINGS["CLIPVisionEncode"]()
loraloadermodelonly = nodes.NODE_CLASS_MAPPINGS["LoraLoaderModelOnly"]()
modelsamplingsd3 = nodes.NODE_CLASS_MAPPINGS["ModelSamplingSD3"]()
pathchsageattentionkj = nodes.NODE_CLASS_MAPPINGS["PathchSageAttentionKJ"]()
wanfirstlastframetovideo = nodes.NODE_CLASS_MAPPINGS["WanFirstLastFrameToVideo"]()
ksampleradvanced = nodes.NODE_CLASS_MAPPINGS["KSamplerAdvanced"]()
vaedecode = nodes.NODE_CLASS_MAPPINGS["VAEDecode"]()
createvideo = nodes.NODE_CLASS_MAPPINGS["CreateVideo"]()
savevideo = nodes.NODE_CLASS_MAPPINGS["SaveVideo"]()
imageresize = nodes.NODE_CLASS_MAPPINGS["ImageResize+"]()
cliploader_38 = cliploader.load_clip(clip_name="umt5_xxl_fp8_e4m3fn_scaled.safetensors", type="wan", device="cpu")
unetloader_37_low_noise = unetloader.load_unet(unet_name="wan2.2_i2v_low_noise_14B_fp8_scaled.safetensors", weight_dtype="default")
unetloader_91_high_noise = unetloader.load_unet(unet_name="wan2.2_i2v_high_noise_14B_fp8_scaled.safetensors", weight_dtype="default")
vaeloader_39 = vaeloader.load_vae(vae_name="wan_2.1_vae.safetensors")
clipvisionloader_49 = clipvisionloader.load_clip(clip_name="clip_vision_h.safetensors")
loraloadermodelonly_94_high = loraloadermodelonly.load_lora_model_only(lora_name="Wan2.2-Lightning_I2V-A14B-4steps-lora_HIGH_fp16.safetensors", strength_model=0.8, model=get_value_at_index(unetloader_91_high_noise, 0))
loraloadermodelonly_95_low = loraloadermodelonly.load_lora_model_only(lora_name="Wan2.2-Lightning_I2V-A14B-4steps-lora_LOW_fp16.safetensors", strength_model=0.8, model=get_value_at_index(unetloader_37_low_noise, 0))
modelsamplingsd3_93_low = modelsamplingsd3.patch(shift=8, model=get_value_at_index(loraloadermodelonly_95_low, 0))
pathchsageattentionkj_98_low = pathchsageattentionkj.patch(sage_attention="auto", model=get_value_at_index(modelsamplingsd3_93_low, 0))
modelsamplingsd3_79_high = modelsamplingsd3.patch(shift=8, model=get_value_at_index(loraloadermodelonly_94_high, 0))
pathchsageattentionkj_96_high = pathchsageattentionkj.patch(sage_attention="auto", model=get_value_at_index(modelsamplingsd3_79_high, 0))
model_loaders = [cliploader_38, unetloader_37_low_noise, unetloader_91_high_noise, vaeloader_39, clipvisionloader_49, loraloadermodelonly_94_high, loraloadermodelonly_95_low]
valid_models = [getattr(loader[0], 'patcher', loader[0]) for loader in model_loaders if not isinstance(loader[0], dict) and not isinstance(getattr(loader[0], 'patcher', None), dict)]
model_management.load_models_gpu(valid_models)
# --- App Logic ---
def calculate_dimensions(image_path):
with Image.open(image_path) as img: width, height = img.size
if width == height: return 480, 480
if width > height: new_width, new_height = 832, int(height * (832 / width))
else: new_height, new_width = 832, int(width * (832 / height))
return (new_width // 16) * 16, (new_height // 16) * 16
@spaces.GPU(duration=120)
def generate_video(prompt, first_image_path, last_image_path, duration_seconds):
with torch.inference_mode():
FPS, MAX_FRAMES = 16, 81
length_in_frames = max(1, min(int(duration_seconds * FPS), MAX_FRAMES))
print(f"Requested duration: {duration_seconds}s. Calculated frames: {length_in_frames}")
target_width, target_height = calculate_dimensions(first_image_path)
loaded_first_image = loadimage.load_image(image=first_image_path)
resized_first_image = imageresize.execute(width=target_width, height=target_height, interpolation="bicubic", method="stretch", image=get_value_at_index(loaded_first_image, 0))
loaded_last_image = loadimage.load_image(image=last_image_path)
resized_last_image = imageresize.execute(width=target_width, height=target_height, interpolation="bicubic", method="stretch", image=get_value_at_index(loaded_last_image, 0))
cliptextencode_6 = cliptextencode.encode(text=prompt, clip=get_value_at_index(cliploader_38, 0))
cliptextencode_7_negative = cliptextencode.encode(text="low quality, worst quality, jpeg artifacts, ugly, deformed, blurry", clip=get_value_at_index(cliploader_38, 0))
clipvisionencode_51 = clipvisionencode.encode(crop="none", clip_vision=get_value_at_index(clipvisionloader_49, 0), image=get_value_at_index(resized_first_image, 0))
clipvisionencode_87 = clipvisionencode.encode(crop="none", clip_vision=get_value_at_index(clipvisionloader_49, 0), image=get_value_at_index(resized_last_image, 0))
wanfirstlastframetovideo_83 = wanfirstlastframetovideo.EXECUTE_NORMALIZED(width=target_width, height=target_height, length=length_in_frames, batch_size=1, positive=get_value_at_index(cliptextencode_6, 0), negative=get_value_at_index(cliptextencode_7_negative, 0), vae=get_value_at_index(vaeloader_39, 0), clip_vision_start_image=get_value_at_index(clipvisionencode_51, 0), clip_vision_end_image=get_value_at_index(clipvisionencode_87, 0), start_image=get_value_at_index(resized_first_image, 0), end_image=get_value_at_index(resized_last_image, 0))
ksampler_positive = get_value_at_index(wanfirstlastframetovideo_83, 0)
ksampler_negative = get_value_at_index(wanfirstlastframetovideo_83, 1)
ksampler_latent = get_value_at_index(wanfirstlastframetovideo_83, 2)
ksampleradvanced_101 = ksampleradvanced.sample(add_noise="enable", noise_seed=random.randint(1, 2**64), steps=8, cfg=1, sampler_name="euler", scheduler="simple", start_at_step=0, end_at_step=4, return_with_leftover_noise="enable", model=get_value_at_index(pathchsageattentionkj_96_high, 0), positive=ksampler_positive, negative=ksampler_negative, latent_image=ksampler_latent)
ksampleradvanced_102 = ksampleradvanced.sample(add_noise="disable", noise_seed=random.randint(1, 2**64), steps=8, cfg=1, sampler_name="euler", scheduler="simple", start_at_step=4, end_at_step=10000, return_with_leftover_noise="disable", model=get_value_at_index(pathchsageattentionkj_98_low, 0), positive=ksampler_positive, negative=ksampler_negative, latent_image=get_value_at_index(ksampleradvanced_101, 0))
vaedecode_8 = vaedecode.decode(samples=get_value_at_index(ksampleradvanced_102, 0), vae=get_value_at_index(vaeloader_39, 0))
createvideo_104 = createvideo.create_video(fps=16, images=get_value_at_index(vaedecode_8, 0))
savevideo_103 = savevideo.save_video(filename_prefix="ComfyUI_Video", format="mp4", codec="libx264", video=get_value_at_index(createvideo_104, 0))
return f"output/{savevideo_103['ui']['videos'][0]['filename']}"
# --- Gradio Interface (no changes needed) ---
with gr.Blocks() as app:
gr.Markdown("# Wan 2.2 First/Last Frame to Video")
gr.Markdown("Provide a starting image, an ending image, a text prompt, and a desired duration to generate a video transitioning between them.")
with gr.Row():
with gr.Column(scale=1):
prompt_input = gr.Textbox(label="Prompt", value="a man dancing in the street, cinematic")
duration_slider = gr.Slider(minimum=1.0, maximum=5.0, value=2.0, step=0.1, label="Video Duration (seconds)")
with gr.Row():
first_image = gr.Image(label="First Frame", type="filepath")
last_image = gr.Image(label="Last Frame", type="filepath")
generate_btn = gr.Button("Generate Video")
with gr.Column(scale=2):
output_video = gr.Video(label="Generated Video")
generate_btn.click(fn=generate_video, inputs=[prompt_input, first_image, last_image, duration_slider], outputs=[output_video])
gr.Examples(examples=[["a beautiful woman, cinematic", "examples/start.png", "examples/end.png", 2.5]], inputs=[prompt_input, first_image, last_image, duration_slider])
if __name__ == "__main__":
if not os.path.exists("examples"): os.makedirs("examples")
if not os.path.exists("examples/start.png"): Image.new('RGB', (512, 512), color='red').save('examples/start.png')
if not os.path.exists("examples/end.png"): Image.new('RGB', (512, 512), color='blue').save('examples/end.png')
app.launch()