Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| from typing_extensions import override | |
| from comfy_api.latest import ComfyExtension, io | |
| def project(v0, v1): | |
| v1 = torch.nn.functional.normalize(v1, dim=[-1, -2, -3]) | |
| v0_parallel = (v0 * v1).sum(dim=[-1, -2, -3], keepdim=True) * v1 | |
| v0_orthogonal = v0 - v0_parallel | |
| return v0_parallel, v0_orthogonal | |
| class APG(io.ComfyNode): | |
| def define_schema(cls) -> io.Schema: | |
| return io.Schema( | |
| node_id="APG", | |
| display_name="Adaptive Projected Guidance", | |
| category="sampling/custom_sampling", | |
| inputs=[ | |
| io.Model.Input("model"), | |
| io.Float.Input( | |
| "eta", | |
| default=1.0, | |
| min=-10.0, | |
| max=10.0, | |
| step=0.01, | |
| tooltip="Controls the scale of the parallel guidance vector. Default CFG behavior at a setting of 1.", | |
| ), | |
| io.Float.Input( | |
| "norm_threshold", | |
| default=5.0, | |
| min=0.0, | |
| max=50.0, | |
| step=0.1, | |
| tooltip="Normalize guidance vector to this value, normalization disable at a setting of 0.", | |
| ), | |
| io.Float.Input( | |
| "momentum", | |
| default=0.0, | |
| min=-5.0, | |
| max=1.0, | |
| step=0.01, | |
| tooltip="Controls a running average of guidance during diffusion, disabled at a setting of 0.", | |
| ), | |
| ], | |
| outputs=[io.Model.Output()], | |
| ) | |
| def execute(cls, model, eta, norm_threshold, momentum) -> io.NodeOutput: | |
| running_avg = 0 | |
| prev_sigma = None | |
| def pre_cfg_function(args): | |
| nonlocal running_avg, prev_sigma | |
| if len(args["conds_out"]) == 1: return args["conds_out"] | |
| cond = args["conds_out"][0] | |
| uncond = args["conds_out"][1] | |
| sigma = args["sigma"][0] | |
| cond_scale = args["cond_scale"] | |
| if prev_sigma is not None and sigma > prev_sigma: | |
| running_avg = 0 | |
| prev_sigma = sigma | |
| guidance = cond - uncond | |
| if momentum != 0: | |
| if not torch.is_tensor(running_avg): | |
| running_avg = guidance | |
| else: | |
| running_avg = momentum * running_avg + guidance | |
| guidance = running_avg | |
| if norm_threshold > 0: | |
| guidance_norm = guidance.norm(p=2, dim=[-1, -2, -3], keepdim=True) | |
| scale = torch.minimum( | |
| torch.ones_like(guidance_norm), | |
| norm_threshold / guidance_norm | |
| ) | |
| guidance = guidance * scale | |
| guidance_parallel, guidance_orthogonal = project(guidance, cond) | |
| modified_guidance = guidance_orthogonal + eta * guidance_parallel | |
| modified_cond = (uncond + modified_guidance) + (cond - uncond) / cond_scale | |
| return [modified_cond, uncond] + args["conds_out"][2:] | |
| m = model.clone() | |
| m.set_model_sampler_pre_cfg_function(pre_cfg_function) | |
| return io.NodeOutput(m) | |
| class ApgExtension(ComfyExtension): | |
| async def get_node_list(self) -> list[type[io.ComfyNode]]: | |
| return [ | |
| APG, | |
| ] | |
| async def comfy_entrypoint() -> ApgExtension: | |
| return ApgExtension() | |