Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler, LCMScheduler | |
| import torch | |
| from huggingface_hub import hf_hub_download | |
| from safetensors.torch import load_file | |
| import spaces | |
| ### SDXL Turbo #### | |
| pipe_turbo = StableDiffusionXLPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16") | |
| pipe_turbo.to("cuda") | |
| ### SDXL Lightning ### | |
| base = "stabilityai/stable-diffusion-xl-base-1.0" | |
| repo = "ByteDance/SDXL-Lightning" | |
| ckpt = "sdxl_lightning_1step_unet_x0.safetensors" | |
| unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cuda", torch.float16) | |
| unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cuda")) | |
| pipe_lightning = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cuda") | |
| pipe_lightning.scheduler = EulerDiscreteScheduler.from_config(pipe_lightning.scheduler.config, timestep_spacing="trailing", prediction_type="sample") | |
| pipe_lightning.to("cuda") | |
| ### Hyper SDXL ### | |
| repo_name = "ByteDance/Hyper-SD" | |
| ckpt_name = "Hyper-SDXL-1step-Unet.safetensors" | |
| unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cuda", torch.float16) | |
| unet.load_state_dict(load_file(hf_hub_download(repo_name, ckpt_name), device="cuda")) | |
| pipe_hyper = DiffusionPipeline.from_pretrained(base_model_id, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cuda") | |
| pipe_hyper.scheduler = LCMScheduler.from_config(pipe_hyper.scheduler.config) | |
| pipe_hyper.to("cuda") | |
| def run(prompt): | |
| image_turbo=pipe_turbo(prompt=prompt, num_inference_steps=1, guidance_scale=0).images[0] | |
| image_lightning=pipe_lightning(prompt=prompt, num_inference_steps=1, guidance_scale=0).images[0] | |
| image_hyper=pipe_hyper(prompt=prompt, num_inference_steps=1, guidance_scale=0, timesteps=[800]).images[0] | |
| return image_turbo, image_lightning, image_hyper | |
| css = ''' | |
| .gradio-container{max-width: 768px !important} | |
| ''' | |
| with gr.Blocks(css=css) as demo: | |
| prompt = gr.Textbox(label="Prompt") | |
| run = gr.Button("Run") | |
| with gr.Row(): | |
| image_turbo = gr.Image(label="SDXL Turbo") | |
| image_lightning = gr.Image(label="SDXL Lightning") | |
| image_hyper = gr.Image("Hyper SDXL") | |
| run.click(fn=run, inputs=prompt, outputs=[image_turbo, image_lightning, image_hyper]) | |