Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -14,6 +14,7 @@ import random
|
|
| 14 |
import time
|
| 15 |
import requests
|
| 16 |
import pandas as pd
|
|
|
|
| 17 |
|
| 18 |
#Load prompts for randomization
|
| 19 |
df = pd.read_csv('prompts.csv', header=None)
|
|
@@ -23,6 +24,31 @@ prompt_values = df.values.flatten()
|
|
| 23 |
with open('loras.json', 'r') as f:
|
| 24 |
loras = json.load(f)
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
# Initialize the base model
|
| 27 |
dtype = torch.bfloat16
|
| 28 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 14 |
import time
|
| 15 |
import requests
|
| 16 |
import pandas as pd
|
| 17 |
+
import tempfile
|
| 18 |
|
| 19 |
#Load prompts for randomization
|
| 20 |
df = pd.read_csv('prompts.csv', header=None)
|
|
|
|
| 24 |
with open('loras.json', 'r') as f:
|
| 25 |
loras = json.load(f)
|
| 26 |
|
| 27 |
+
def download_and_cache_lora_images(loras):
|
| 28 |
+
"""Download all lora images and replace URLs with local paths"""
|
| 29 |
+
for lora in loras:
|
| 30 |
+
if lora.get('image') and lora['image'].startswith('http'):
|
| 31 |
+
try:
|
| 32 |
+
response = requests.get(lora['image'], timeout=10)
|
| 33 |
+
response.raise_for_status()
|
| 34 |
+
|
| 35 |
+
# Create temp file
|
| 36 |
+
temp_dir = tempfile.gettempdir()
|
| 37 |
+
filename = f"lora_{hash(lora['image'])}.png"
|
| 38 |
+
local_path = os.path.join(temp_dir, filename)
|
| 39 |
+
|
| 40 |
+
with open(local_path, 'wb') as f:
|
| 41 |
+
f.write(response.content)
|
| 42 |
+
|
| 43 |
+
lora['image'] = local_path
|
| 44 |
+
print(f"Downloaded image for {lora['title']}")
|
| 45 |
+
except Exception as e:
|
| 46 |
+
print(f"Failed to download image for {lora['title']}: {e}")
|
| 47 |
+
lora['image'] = None
|
| 48 |
+
return loras
|
| 49 |
+
|
| 50 |
+
loras = download_and_cache_lora_images(loras)
|
| 51 |
+
|
| 52 |
# Initialize the base model
|
| 53 |
dtype = torch.bfloat16
|
| 54 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|