Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -207,6 +207,24 @@ def merge_incompatible_lora(full_path_lora, lora_scale):
|
|
| 207 |
del lora_model
|
| 208 |
gc.collect()
|
| 209 |
@spaces.GPU
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, sdxl_loras, progress=gr.Progress(track_tqdm=True)):
|
| 211 |
global last_lora, last_merged, last_fused, pipe
|
| 212 |
|
|
@@ -254,7 +272,7 @@ def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_stre
|
|
| 254 |
weight_name = sdxl_loras[selected_state.index]["weights"]
|
| 255 |
|
| 256 |
full_path_lora = state_dicts[repo_name]["saved_name"]
|
| 257 |
-
|
| 258 |
cross_attention_kwargs = None
|
| 259 |
print("Last LoRA: ", last_lora)
|
| 260 |
print("Current LoRA: ", repo_name)
|
|
@@ -263,7 +281,7 @@ def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_stre
|
|
| 263 |
if(last_fused):
|
| 264 |
pipe.unfuse_lora()
|
| 265 |
pipe.unload_lora_weights()
|
| 266 |
-
pipe.load_lora_weights(
|
| 267 |
pipe.fuse_lora(lora_scale)
|
| 268 |
last_fused = True
|
| 269 |
is_pivotal = sdxl_loras[selected_state.index]["is_pivotal"]
|
|
@@ -287,22 +305,8 @@ def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_stre
|
|
| 287 |
negative_conditioning, negative_pooled = compel(negative)
|
| 288 |
else:
|
| 289 |
negative_conditioning, negative_pooled = None, None
|
| 290 |
-
|
| 291 |
-
image =
|
| 292 |
-
prompt_embeds=conditioning,
|
| 293 |
-
pooled_prompt_embeds=pooled,
|
| 294 |
-
negative_prompt_embeds=negative_conditioning,
|
| 295 |
-
negative_pooled_prompt_embeds=negative_pooled,
|
| 296 |
-
width=1024,
|
| 297 |
-
height=1024,
|
| 298 |
-
image_embeds=face_emb,
|
| 299 |
-
image=face_image,
|
| 300 |
-
strength=1-image_strength,
|
| 301 |
-
control_image=images,
|
| 302 |
-
num_inference_steps=20,
|
| 303 |
-
guidance_scale = guidance_scale,
|
| 304 |
-
controlnet_conditioning_scale=[face_strength, depth_control_scale],
|
| 305 |
-
).images[0]
|
| 306 |
last_lora = repo_name
|
| 307 |
gc.collect()
|
| 308 |
return image, gr.update(visible=True)
|
|
|
|
| 207 |
del lora_model
|
| 208 |
gc.collect()
|
| 209 |
@spaces.GPU
|
| 210 |
+
def generate_image(conditioning, pooled, negative_conditioning, negative_pooled, face_emb, face_image, image_strength, images, guidance_scale, face_strength, depth_control_scale):
|
| 211 |
+
image = pipe(
|
| 212 |
+
prompt_embeds=conditioning,
|
| 213 |
+
pooled_prompt_embeds=pooled,
|
| 214 |
+
negative_prompt_embeds=negative_conditioning,
|
| 215 |
+
negative_pooled_prompt_embeds=negative_pooled,
|
| 216 |
+
width=1024,
|
| 217 |
+
height=1024,
|
| 218 |
+
image_embeds=face_emb,
|
| 219 |
+
image=face_image,
|
| 220 |
+
strength=1-image_strength,
|
| 221 |
+
control_image=images,
|
| 222 |
+
num_inference_steps=20,
|
| 223 |
+
guidance_scale = guidance_scale,
|
| 224 |
+
controlnet_conditioning_scale=[face_strength, depth_control_scale],
|
| 225 |
+
).images[0]
|
| 226 |
+
return image
|
| 227 |
+
|
| 228 |
def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, sdxl_loras, progress=gr.Progress(track_tqdm=True)):
|
| 229 |
global last_lora, last_merged, last_fused, pipe
|
| 230 |
|
|
|
|
| 272 |
weight_name = sdxl_loras[selected_state.index]["weights"]
|
| 273 |
|
| 274 |
full_path_lora = state_dicts[repo_name]["saved_name"]
|
| 275 |
+
loaded_state_dict = copy.deepcopy(state_dicts[repo_name]["state_dict"])
|
| 276 |
cross_attention_kwargs = None
|
| 277 |
print("Last LoRA: ", last_lora)
|
| 278 |
print("Current LoRA: ", repo_name)
|
|
|
|
| 281 |
if(last_fused):
|
| 282 |
pipe.unfuse_lora()
|
| 283 |
pipe.unload_lora_weights()
|
| 284 |
+
pipe.load_lora_weights(loaded_state_dict)
|
| 285 |
pipe.fuse_lora(lora_scale)
|
| 286 |
last_fused = True
|
| 287 |
is_pivotal = sdxl_loras[selected_state.index]["is_pivotal"]
|
|
|
|
| 305 |
negative_conditioning, negative_pooled = compel(negative)
|
| 306 |
else:
|
| 307 |
negative_conditioning, negative_pooled = None, None
|
| 308 |
+
|
| 309 |
+
image = generate_image(conditioning, pooled, negative_conditioning, negative_pooled, face_emb, face_image, image_strength, images, guidance_scale, face_strength, depth_control_scale)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 310 |
last_lora = repo_name
|
| 311 |
gc.collect()
|
| 312 |
return image, gr.update(visible=True)
|