Spaces:
Running
on
A100
Running
on
A100
Commit
·
7389e23
1
Parent(s):
2804630
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,14 +6,13 @@ from safetensors.torch import load_file
|
|
| 6 |
from share_btn import community_icon_html, loading_icon_html, share_js
|
| 7 |
from cog_sdxl_dataset_and_utils import TokenEmbeddingsHandler
|
| 8 |
import lora
|
| 9 |
-
from time import sleep
|
| 10 |
import copy
|
| 11 |
import json
|
| 12 |
import gc
|
| 13 |
-
|
| 14 |
with open("sdxl_loras.json", "r") as file:
|
| 15 |
data = json.load(file)
|
| 16 |
-
|
| 17 |
{
|
| 18 |
"image": item["image"],
|
| 19 |
"title": item["title"],
|
|
@@ -23,6 +22,8 @@ with open("sdxl_loras.json", "r") as file:
|
|
| 23 |
"is_compatible": item["is_compatible"],
|
| 24 |
"is_pivotal": item.get("is_pivotal", False),
|
| 25 |
"text_embedding_weights": item.get("text_embedding_weights", None),
|
|
|
|
|
|
|
| 26 |
"is_nc": item.get("is_nc", False)
|
| 27 |
}
|
| 28 |
for item in data
|
|
@@ -30,16 +31,20 @@ with open("sdxl_loras.json", "r") as file:
|
|
| 30 |
|
| 31 |
device = "cuda"
|
| 32 |
|
| 33 |
-
|
|
|
|
|
|
|
| 34 |
saved_name = hf_hub_download(item["repo"], item["weights"])
|
| 35 |
|
| 36 |
if not saved_name.endswith('.safetensors'):
|
| 37 |
state_dict = torch.load(saved_name)
|
| 38 |
else:
|
| 39 |
state_dict = load_file(saved_name)
|
| 40 |
-
|
| 41 |
-
item["
|
| 42 |
-
|
|
|
|
|
|
|
| 43 |
|
| 44 |
vae = AutoencoderKL.from_pretrained(
|
| 45 |
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
|
|
@@ -55,7 +60,7 @@ pipe.to(device)
|
|
| 55 |
last_lora = ""
|
| 56 |
last_merged = False
|
| 57 |
last_fused = False
|
| 58 |
-
def update_selection(selected_state: gr.SelectData):
|
| 59 |
lora_repo = sdxl_loras[selected_state.index]["repo"]
|
| 60 |
instance_prompt = sdxl_loras[selected_state.index]["trigger_word"]
|
| 61 |
new_placeholder = "Type a prompt. This LoRA applies for all prompts, no need for a trigger word" if instance_prompt == "" else "Type a prompt to use your selected LoRA"
|
|
@@ -135,7 +140,7 @@ def merge_incompatible_lora(full_path_lora, lora_scale):
|
|
| 135 |
del lora_model
|
| 136 |
gc.collect()
|
| 137 |
|
| 138 |
-
def run_lora(prompt, negative, lora_scale, selected_state, progress=gr.Progress(track_tqdm=True)):
|
| 139 |
global last_lora, last_merged, last_fused, pipe
|
| 140 |
|
| 141 |
if negative == "":
|
|
@@ -145,8 +150,9 @@ def run_lora(prompt, negative, lora_scale, selected_state, progress=gr.Progress(
|
|
| 145 |
raise gr.Error("You must select a LoRA")
|
| 146 |
repo_name = sdxl_loras[selected_state.index]["repo"]
|
| 147 |
weight_name = sdxl_loras[selected_state.index]["weights"]
|
| 148 |
-
|
| 149 |
-
|
|
|
|
| 150 |
cross_attention_kwargs = None
|
| 151 |
if last_lora != repo_name:
|
| 152 |
if last_merged:
|
|
@@ -186,8 +192,8 @@ def run_lora(prompt, negative, lora_scale, selected_state, progress=gr.Progress(
|
|
| 186 |
image = pipe(
|
| 187 |
prompt=prompt,
|
| 188 |
negative_prompt=negative,
|
| 189 |
-
width=
|
| 190 |
-
height=
|
| 191 |
num_inference_steps=20,
|
| 192 |
guidance_scale=7.5,
|
| 193 |
).images[0]
|
|
@@ -195,22 +201,36 @@ def run_lora(prompt, negative, lora_scale, selected_state, progress=gr.Progress(
|
|
| 195 |
gc.collect()
|
| 196 |
return image, gr.update(visible=True)
|
| 197 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
|
| 199 |
with gr.Blocks(css="custom.css") as demo:
|
|
|
|
| 200 |
title = gr.HTML(
|
| 201 |
"""<h1><img src="https://i.imgur.com/vT48NAO.png" alt="LoRA"> LoRA the Explorer</h1>""",
|
| 202 |
elem_id="title",
|
| 203 |
)
|
| 204 |
selected_state = gr.State()
|
| 205 |
with gr.Row():
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
|
|
|
|
|
|
| 214 |
with gr.Column():
|
| 215 |
prompt_title = gr.Markdown(
|
| 216 |
value="### Click on a LoRA in the gallery to select it",
|
|
@@ -268,12 +288,18 @@ with gr.Blocks(css="custom.css") as demo:
|
|
| 268 |
submit_disclaimer = gr.Markdown(
|
| 269 |
"This is a curated gallery by me, [apolinário (multimodal.art)](https://twitter.com/multimodalart). I'll try to include as many cool LoRAs as they are submitted! You can [duplicate this Space](https://huggingface.co/spaces/multimodalart/LoraTheExplorer?duplicate=true) to use it privately, and add your own LoRAs by editing `sdxl_loras.json` in the Files tab of your private space."
|
| 270 |
)
|
| 271 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 272 |
gallery.select(
|
| 273 |
-
update_selection,
|
|
|
|
| 274 |
outputs=[prompt_title, prompt, prompt, selected_state, use_diffusers, use_uis],
|
| 275 |
queue=False,
|
| 276 |
-
show_progress=False
|
| 277 |
)
|
| 278 |
prompt.submit(
|
| 279 |
fn=check_selected,
|
|
@@ -282,7 +308,7 @@ with gr.Blocks(css="custom.css") as demo:
|
|
| 282 |
show_progress=False
|
| 283 |
).success(
|
| 284 |
fn=run_lora,
|
| 285 |
-
inputs=[prompt, negative, weight, selected_state],
|
| 286 |
outputs=[result, share_group],
|
| 287 |
)
|
| 288 |
button.click(
|
|
@@ -292,10 +318,10 @@ with gr.Blocks(css="custom.css") as demo:
|
|
| 292 |
show_progress=False
|
| 293 |
).success(
|
| 294 |
fn=run_lora,
|
| 295 |
-
inputs=[prompt, negative, weight, selected_state],
|
| 296 |
outputs=[result, share_group],
|
| 297 |
)
|
| 298 |
share_button.click(None, [], [], _js=share_js)
|
| 299 |
-
|
| 300 |
demo.queue(max_size=20)
|
| 301 |
demo.launch()
|
|
|
|
| 6 |
from share_btn import community_icon_html, loading_icon_html, share_js
|
| 7 |
from cog_sdxl_dataset_and_utils import TokenEmbeddingsHandler
|
| 8 |
import lora
|
|
|
|
| 9 |
import copy
|
| 10 |
import json
|
| 11 |
import gc
|
| 12 |
+
import random
|
| 13 |
with open("sdxl_loras.json", "r") as file:
|
| 14 |
data = json.load(file)
|
| 15 |
+
sdxl_loras_raw = [
|
| 16 |
{
|
| 17 |
"image": item["image"],
|
| 18 |
"title": item["title"],
|
|
|
|
| 22 |
"is_compatible": item["is_compatible"],
|
| 23 |
"is_pivotal": item.get("is_pivotal", False),
|
| 24 |
"text_embedding_weights": item.get("text_embedding_weights", None),
|
| 25 |
+
"likes": item.get("likes", 0),
|
| 26 |
+
"downloads": item.get("downloads", 0),
|
| 27 |
"is_nc": item.get("is_nc", False)
|
| 28 |
}
|
| 29 |
for item in data
|
|
|
|
| 31 |
|
| 32 |
device = "cuda"
|
| 33 |
|
| 34 |
+
state_dicts = {}
|
| 35 |
+
|
| 36 |
+
for item in sdxl_loras_raw:
|
| 37 |
saved_name = hf_hub_download(item["repo"], item["weights"])
|
| 38 |
|
| 39 |
if not saved_name.endswith('.safetensors'):
|
| 40 |
state_dict = torch.load(saved_name)
|
| 41 |
else:
|
| 42 |
state_dict = load_file(saved_name)
|
| 43 |
+
|
| 44 |
+
state_dicts[item["repo"]] = {
|
| 45 |
+
"saved_name": saved_name,
|
| 46 |
+
"state_dict": state_dict
|
| 47 |
+
}
|
| 48 |
|
| 49 |
vae = AutoencoderKL.from_pretrained(
|
| 50 |
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
|
|
|
|
| 60 |
last_lora = ""
|
| 61 |
last_merged = False
|
| 62 |
last_fused = False
|
| 63 |
+
def update_selection(selected_state: gr.SelectData, sdxl_loras):
|
| 64 |
lora_repo = sdxl_loras[selected_state.index]["repo"]
|
| 65 |
instance_prompt = sdxl_loras[selected_state.index]["trigger_word"]
|
| 66 |
new_placeholder = "Type a prompt. This LoRA applies for all prompts, no need for a trigger word" if instance_prompt == "" else "Type a prompt to use your selected LoRA"
|
|
|
|
| 140 |
del lora_model
|
| 141 |
gc.collect()
|
| 142 |
|
| 143 |
+
def run_lora(prompt, negative, lora_scale, selected_state, sdxl_loras, progress=gr.Progress(track_tqdm=True)):
|
| 144 |
global last_lora, last_merged, last_fused, pipe
|
| 145 |
|
| 146 |
if negative == "":
|
|
|
|
| 150 |
raise gr.Error("You must select a LoRA")
|
| 151 |
repo_name = sdxl_loras[selected_state.index]["repo"]
|
| 152 |
weight_name = sdxl_loras[selected_state.index]["weights"]
|
| 153 |
+
|
| 154 |
+
full_path_lora = state_dicts[repo_name]["saved_name"]
|
| 155 |
+
loaded_state_dict = state_dicts[repo_name]["state_dict"]
|
| 156 |
cross_attention_kwargs = None
|
| 157 |
if last_lora != repo_name:
|
| 158 |
if last_merged:
|
|
|
|
| 192 |
image = pipe(
|
| 193 |
prompt=prompt,
|
| 194 |
negative_prompt=negative,
|
| 195 |
+
width=1024,
|
| 196 |
+
height=1024,
|
| 197 |
num_inference_steps=20,
|
| 198 |
guidance_scale=7.5,
|
| 199 |
).images[0]
|
|
|
|
| 201 |
gc.collect()
|
| 202 |
return image, gr.update(visible=True)
|
| 203 |
|
| 204 |
+
def shuffle_gallery(sdxl_loras):
|
| 205 |
+
random.shuffle(sdxl_loras)
|
| 206 |
+
return [(item["image"], item["title"]) for item in sdxl_loras], sdxl_loras
|
| 207 |
+
|
| 208 |
+
def swap_gallery(order, sdxl_loras):
|
| 209 |
+
if(order == "random"):
|
| 210 |
+
return shuffle_gallery(sdxl_loras)
|
| 211 |
+
else:
|
| 212 |
+
sorted_gallery = sorted(sdxl_loras, key=lambda x: x.get(order, 0), reverse=True)
|
| 213 |
+
return [(item["image"], item["title"]) for item in sorted_gallery], sorted_gallery
|
| 214 |
+
|
| 215 |
|
| 216 |
with gr.Blocks(css="custom.css") as demo:
|
| 217 |
+
gr_sdxl_loras = gr.State(value=sdxl_loras_raw)
|
| 218 |
title = gr.HTML(
|
| 219 |
"""<h1><img src="https://i.imgur.com/vT48NAO.png" alt="LoRA"> LoRA the Explorer</h1>""",
|
| 220 |
elem_id="title",
|
| 221 |
)
|
| 222 |
selected_state = gr.State()
|
| 223 |
with gr.Row():
|
| 224 |
+
with gr.Box(elem_id="gallery_box"):
|
| 225 |
+
order_gallery = gr.Radio(choices=["random", "likes"], value="random", label="Order by", elem_id="order_radio")
|
| 226 |
+
gallery = gr.Gallery(
|
| 227 |
+
#value=[(item["image"], item["title"]) for item in sdxl_loras],
|
| 228 |
+
label="SDXL LoRA Gallery",
|
| 229 |
+
allow_preview=False,
|
| 230 |
+
columns=3,
|
| 231 |
+
elem_id="gallery",
|
| 232 |
+
show_share_button=False
|
| 233 |
+
)
|
| 234 |
with gr.Column():
|
| 235 |
prompt_title = gr.Markdown(
|
| 236 |
value="### Click on a LoRA in the gallery to select it",
|
|
|
|
| 288 |
submit_disclaimer = gr.Markdown(
|
| 289 |
"This is a curated gallery by me, [apolinário (multimodal.art)](https://twitter.com/multimodalart). I'll try to include as many cool LoRAs as they are submitted! You can [duplicate this Space](https://huggingface.co/spaces/multimodalart/LoraTheExplorer?duplicate=true) to use it privately, and add your own LoRAs by editing `sdxl_loras.json` in the Files tab of your private space."
|
| 290 |
)
|
| 291 |
+
order_gallery.change(
|
| 292 |
+
fn=swap_gallery,
|
| 293 |
+
inputs=[order_gallery, gr_sdxl_loras],
|
| 294 |
+
outputs=[gallery, gr_sdxl_loras],
|
| 295 |
+
queue=False
|
| 296 |
+
)
|
| 297 |
gallery.select(
|
| 298 |
+
fn=update_selection,
|
| 299 |
+
inputs=[gr_sdxl_loras],
|
| 300 |
outputs=[prompt_title, prompt, prompt, selected_state, use_diffusers, use_uis],
|
| 301 |
queue=False,
|
| 302 |
+
show_progress=False
|
| 303 |
)
|
| 304 |
prompt.submit(
|
| 305 |
fn=check_selected,
|
|
|
|
| 308 |
show_progress=False
|
| 309 |
).success(
|
| 310 |
fn=run_lora,
|
| 311 |
+
inputs=[prompt, negative, weight, selected_state, gr_sdxl_loras],
|
| 312 |
outputs=[result, share_group],
|
| 313 |
)
|
| 314 |
button.click(
|
|
|
|
| 318 |
show_progress=False
|
| 319 |
).success(
|
| 320 |
fn=run_lora,
|
| 321 |
+
inputs=[prompt, negative, weight, selected_state, gr_sdxl_loras],
|
| 322 |
outputs=[result, share_group],
|
| 323 |
)
|
| 324 |
share_button.click(None, [], [], _js=share_js)
|
| 325 |
+
demo.load(fn=shuffle_gallery, inputs=[gr_sdxl_loras], outputs=[gallery, gr_sdxl_loras], queue=False)
|
| 326 |
demo.queue(max_size=20)
|
| 327 |
demo.launch()
|