Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import numpy as np | |
| import random | |
| import spaces | |
| from diffusers import ChromaPipeline | |
| import torch | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| model_repo_id = "lodestones/Chroma1-HD" | |
| if torch.cuda.is_available(): | |
| torch_dtype = torch.bfloat16 | |
| else: | |
| torch_dtype = torch.float32 | |
| pipe = ChromaPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) | |
| pipe = pipe.to(device) | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 1024 | |
| def infer(prompt, negative_prompt="low quality, ugly, unfinished, out of focus, deformed, disfigure, blurry, smudged, restricted palette, flat colors", seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.0, num_inference_steps=40, progress=gr.Progress(track_tqdm=True)): | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator(device).manual_seed(seed) | |
| image = pipe( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| width=width, | |
| height=height, | |
| generator=generator, | |
| num_images_per_prompt=1 | |
| ).images[0] | |
| return image, seed | |
| examples = [ | |
| "A high-fashion close-up portrait of a blonde woman in clear sunglasses. The image uses a bold teal and red color split for dramatic lighting. The background is a simple teal-green. The photo is sharp and well-composed, and is designed for viewing with anaglyph 3D glasses for optimal effect. It looks professionally done.", | |
| "A dog eating pizza", | |
| "The spirit of a tamagotchi wandering in San Francisco", | |
| ] | |
| css=""" | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 760px; | |
| } | |
| #button{ | |
| align-self: stretch; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown(f""" | |
| # Chroma1-HD | |
| [Chroma1-HD](https://huggingface.co/lodestones/Chroma1-HD) is an 8.9B parameter text-to-image foundational model based on FLUX.1-schnell | |
| """) | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| ) | |
| negative_prompt = gr.Text( | |
| label="Negative prompt", | |
| max_lines=1, | |
| placeholder="Enter a negative prompt", | |
| value="low quality, ugly, unfinished, out of focus, deformed, disfigure, blurry, smudged, restricted palette, flat colors" | |
| ) | |
| with gr.Row(): | |
| run_button = gr.Button("Run", scale=1, elem_id="button") | |
| result = gr.Image(label="Result", show_label=False) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| guidance_scale = gr.Slider( | |
| label="Guidance Scale", | |
| minimum=1.0, | |
| maximum=10.0, | |
| step=0.1, | |
| value=3.0, | |
| ) | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=433, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=100, | |
| step=1, | |
| value=40, | |
| ) | |
| gr.Examples( | |
| examples=examples, | |
| inputs=[prompt], | |
| outputs=[result, seed], | |
| fn=infer, | |
| cache_examples="lazy" | |
| ) | |
| gr.on( | |
| triggers=[run_button.click, prompt.submit, negative_prompt.submit], | |
| fn=infer, | |
| inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
| outputs=[result, seed] | |
| ) | |
| demo.queue().launch() |