Spaces:
Runtime error
Runtime error
Commit
·
cf7ddc6
1
Parent(s):
807cc67
add instruction following
Browse files- EXTERNAL_MODEL_RESULTS.json +0 -0
- app.py +114 -2
EXTERNAL_MODEL_RESULTS.json
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
app.py
CHANGED
|
@@ -226,6 +226,12 @@ TASK_LIST_RETRIEVAL_LAW = [
|
|
| 226 |
"LegalSummarization",
|
| 227 |
]
|
| 228 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
TASK_LIST_RETRIEVAL_PL = [
|
| 230 |
"ArguAna-PL",
|
| 231 |
"DBPedia-PL",
|
|
@@ -322,6 +328,7 @@ TASK_TO_METRIC = {
|
|
| 322 |
"Retrieval": "ndcg_at_10",
|
| 323 |
"STS": "cos_sim_spearman",
|
| 324 |
"Summarization": "cos_sim_spearman",
|
|
|
|
| 325 |
}
|
| 326 |
|
| 327 |
def make_clickable_model(model_name, link=None):
|
|
@@ -339,6 +346,8 @@ EXTERNAL_MODELS = [
|
|
| 339 |
"Cohere-embed-multilingual-v3.0",
|
| 340 |
"Cohere-embed-multilingual-light-v3.0",
|
| 341 |
"DanskBERT",
|
|
|
|
|
|
|
| 342 |
"LASER2",
|
| 343 |
"LLM2Vec-Llama-supervised",
|
| 344 |
"LLM2Vec-Llama-unsupervised",
|
|
@@ -364,17 +373,22 @@ EXTERNAL_MODELS = [
|
|
| 364 |
"bge-large-zh-v1.5",
|
| 365 |
"bge-large-zh-noinstruct",
|
| 366 |
"bge-small-zh-v1.5",
|
|
|
|
| 367 |
"contriever-base-msmarco",
|
| 368 |
"cross-en-de-roberta-sentence-transformer",
|
| 369 |
"dfm-encoder-large-v1",
|
| 370 |
"dfm-sentence-encoder-large-1",
|
| 371 |
"distiluse-base-multilingual-cased-v2",
|
| 372 |
"e5-base",
|
|
|
|
| 373 |
"e5-large",
|
|
|
|
| 374 |
"e5-mistral-7b-instruct",
|
| 375 |
"e5-small",
|
| 376 |
"electra-small-nordic",
|
| 377 |
"electra-small-swedish-cased-discriminator",
|
|
|
|
|
|
|
| 378 |
"flaubert_base_cased",
|
| 379 |
"flaubert_base_uncased",
|
| 380 |
"flaubert_large_cased",
|
|
@@ -391,11 +405,18 @@ EXTERNAL_MODELS = [
|
|
| 391 |
"gtr-t5-xl",
|
| 392 |
"gtr-t5-xxl",
|
| 393 |
"herbert-base-retrieval-v2",
|
|
|
|
|
|
|
| 394 |
"komninos",
|
|
|
|
| 395 |
"luotuo-bert-medium",
|
| 396 |
"m3e-base",
|
| 397 |
"m3e-large",
|
|
|
|
| 398 |
"mistral-embed",
|
|
|
|
|
|
|
|
|
|
| 399 |
"msmarco-bert-co-condensor",
|
| 400 |
"multi-qa-MiniLM-L6-cos-v1",
|
| 401 |
"multilingual-e5-base",
|
|
@@ -423,6 +444,8 @@ EXTERNAL_MODELS = [
|
|
| 423 |
"sup-simcse-bert-base-uncased",
|
| 424 |
"st-polish-paraphrase-from-distilroberta",
|
| 425 |
"st-polish-paraphrase-from-mpnet",
|
|
|
|
|
|
|
| 426 |
"text2vec-base-chinese",
|
| 427 |
"text2vec-base-multilingual",
|
| 428 |
"text2vec-large-chinese",
|
|
@@ -470,6 +493,8 @@ EXTERNAL_MODEL_TO_LINK = {
|
|
| 470 |
"LLM2Vec-Sheared-Llama-supervised": "https://huggingface.co/McGill-NLP/LLM2Vec-Sheared-LLaMA-mntp-supervised",
|
| 471 |
"LLM2Vec-Sheared-Llama-unsupervised": "https://huggingface.co/McGill-NLP/LLM2Vec-Sheared-LLaMA-mntp",
|
| 472 |
"LaBSE": "https://huggingface.co/sentence-transformers/LaBSE",
|
|
|
|
|
|
|
| 473 |
"OpenSearch-text-hybrid": "https://help.aliyun.com/zh/open-search/vector-search-edition/hybrid-retrieval",
|
| 474 |
"allenai-specter": "https://huggingface.co/sentence-transformers/allenai-specter",
|
| 475 |
"allenai-specter": "https://huggingface.co/sentence-transformers/allenai-specter",
|
|
@@ -488,6 +513,7 @@ EXTERNAL_MODEL_TO_LINK = {
|
|
| 488 |
"bge-large-zh-v1.5": "https://huggingface.co/BAAI/bge-large-zh-v1.5",
|
| 489 |
"bge-large-zh-noinstruct": "https://huggingface.co/BAAI/bge-large-zh-noinstruct",
|
| 490 |
"bge-small-zh-v1.5": "https://huggingface.co/BAAI/bge-small-zh-v1.5",
|
|
|
|
| 491 |
"camembert-base": "https://huggingface.co/almanach/camembert-base",
|
| 492 |
"camembert-large": "https://huggingface.co/almanach/camembert-large",
|
| 493 |
"contriever-base-msmarco": "https://huggingface.co/nthakur/contriever-base-msmarco",
|
|
@@ -501,11 +527,15 @@ EXTERNAL_MODEL_TO_LINK = {
|
|
| 501 |
"dfm-encoder-large-v1": "https://huggingface.co/chcaa/dfm-encoder-large-v1",
|
| 502 |
"dfm-sentence-encoder-large-1": "https://huggingface.co/chcaa/dfm-encoder-large-v1",
|
| 503 |
"e5-base": "https://huggingface.co/intfloat/e5-base",
|
|
|
|
| 504 |
"e5-large": "https://huggingface.co/intfloat/e5-large",
|
|
|
|
| 505 |
"e5-mistral-7b-instruct": "https://huggingface.co/intfloat/e5-mistral-7b-instruct",
|
| 506 |
"e5-small": "https://huggingface.co/intfloat/e5-small",
|
| 507 |
"electra-small-nordic": "https://huggingface.co/jonfd/electra-small-nordic",
|
| 508 |
"electra-small-swedish-cased-discriminator": "https://huggingface.co/KBLab/electra-small-swedish-cased-discriminator",
|
|
|
|
|
|
|
| 509 |
"flaubert_base_cased": "https://huggingface.co/flaubert/flaubert_base_cased",
|
| 510 |
"flaubert_base_uncased": "https://huggingface.co/flaubert/flaubert_base_uncased",
|
| 511 |
"flaubert_large_cased": "https://huggingface.co/flaubert/flaubert_large_cased",
|
|
@@ -522,11 +552,18 @@ EXTERNAL_MODEL_TO_LINK = {
|
|
| 522 |
"gtr-t5-xl": "https://huggingface.co/sentence-transformers/gtr-t5-xl",
|
| 523 |
"gtr-t5-xxl": "https://huggingface.co/sentence-transformers/gtr-t5-xxl",
|
| 524 |
"herbert-base-retrieval-v2": "https://huggingface.co/ipipan/herbert-base-retrieval-v2",
|
|
|
|
|
|
|
| 525 |
"komninos": "https://huggingface.co/sentence-transformers/average_word_embeddings_komninos",
|
|
|
|
| 526 |
"luotuo-bert-medium": "https://huggingface.co/silk-road/luotuo-bert-medium",
|
| 527 |
"m3e-base": "https://huggingface.co/moka-ai/m3e-base",
|
| 528 |
"m3e-large": "https://huggingface.co/moka-ai/m3e-large",
|
|
|
|
| 529 |
"mistral-embed": "https://docs.mistral.ai/guides/embeddings",
|
|
|
|
|
|
|
|
|
|
| 530 |
"msmarco-bert-co-condensor": "https://huggingface.co/sentence-transformers/msmarco-bert-co-condensor",
|
| 531 |
"multi-qa-MiniLM-L6-cos-v1": "https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-cos-v1",
|
| 532 |
"multilingual-e5-base": "https://huggingface.co/intfloat/multilingual-e5-base",
|
|
@@ -554,6 +591,8 @@ EXTERNAL_MODEL_TO_LINK = {
|
|
| 554 |
"sup-simcse-bert-base-uncased": "https://huggingface.co/princeton-nlp/sup-simcse-bert-base-uncased",
|
| 555 |
"st-polish-paraphrase-from-distilroberta": "https://huggingface.co/sdadas/st-polish-paraphrase-from-distilroberta",
|
| 556 |
"st-polish-paraphrase-from-mpnet": "https://huggingface.co/sdadas/st-polish-paraphrase-from-mpnet",
|
|
|
|
|
|
|
| 557 |
"text2vec-base-chinese": "https://huggingface.co/shibing624/text2vec-base-chinese",
|
| 558 |
"text2vec-large-chinese": "https://huggingface.co/GanymedeNil/text2vec-large-chinese",
|
| 559 |
"text-embedding-3-small": "https://openai.com/blog/new-embedding-models-and-api-updates",
|
|
@@ -593,6 +632,8 @@ EXTERNAL_MODEL_TO_DIM = {
|
|
| 593 |
"Cohere-embed-multilingual-v3.0": 1024,
|
| 594 |
"Cohere-embed-multilingual-light-v3.0": 384,
|
| 595 |
"DanskBERT": 768,
|
|
|
|
|
|
|
| 596 |
"LASER2": 1024,
|
| 597 |
"LLM2Vec-Llama-supervised": 4096,
|
| 598 |
"LLM2Vec-Llama-unsupervised": 4096,
|
|
@@ -617,6 +658,7 @@ EXTERNAL_MODEL_TO_DIM = {
|
|
| 617 |
"bge-large-zh-v1.5": 1024,
|
| 618 |
"bge-large-zh-noinstruct": 1024,
|
| 619 |
"bge-small-zh-v1.5": 512,
|
|
|
|
| 620 |
"camembert-base": 512,
|
| 621 |
"camembert-large": 768,
|
| 622 |
"contriever-base-msmarco": 768,
|
|
@@ -630,11 +672,15 @@ EXTERNAL_MODEL_TO_DIM = {
|
|
| 630 |
"dfm-encoder-large-v1": 1024,
|
| 631 |
"dfm-sentence-encoder-large-1": 1024,
|
| 632 |
"e5-base": 768,
|
|
|
|
| 633 |
"e5-large": 1024,
|
|
|
|
| 634 |
"e5-mistral-7b-instruct": 4096,
|
| 635 |
"e5-small": 384,
|
| 636 |
"electra-small-nordic": 256,
|
| 637 |
"electra-small-swedish-cased-discriminator": 256,
|
|
|
|
|
|
|
| 638 |
"flaubert_base_cased": 768,
|
| 639 |
"flaubert_base_uncased": 768,
|
| 640 |
"flaubert_large_cased": 1024,
|
|
@@ -652,10 +698,17 @@ EXTERNAL_MODEL_TO_DIM = {
|
|
| 652 |
"gtr-t5-xl": 768,
|
| 653 |
"gtr-t5-xxl": 768,
|
| 654 |
"herbert-base-retrieval-v2": 768,
|
|
|
|
|
|
|
| 655 |
"komninos": 300,
|
|
|
|
| 656 |
"m3e-base": 768,
|
| 657 |
"m3e-large": 768,
|
|
|
|
| 658 |
"mistral-embed": 1024,
|
|
|
|
|
|
|
|
|
|
| 659 |
"msmarco-bert-co-condensor": 768,
|
| 660 |
"multi-qa-MiniLM-L6-cos-v1": 384,
|
| 661 |
"multilingual-e5-base": 768,
|
|
@@ -684,6 +737,8 @@ EXTERNAL_MODEL_TO_DIM = {
|
|
| 684 |
"sup-simcse-bert-base-uncased": 768,
|
| 685 |
"st-polish-paraphrase-from-distilroberta": 768,
|
| 686 |
"st-polish-paraphrase-from-mpnet": 768,
|
|
|
|
|
|
|
| 687 |
"text2vec-base-chinese": 768,
|
| 688 |
"text2vec-large-chinese": 1024,
|
| 689 |
"text-embedding-3-large": 3072,
|
|
@@ -723,6 +778,8 @@ EXTERNAL_MODEL_TO_SEQLEN = {
|
|
| 723 |
"Cohere-embed-multilingual-v3.0": 512,
|
| 724 |
"Cohere-embed-multilingual-light-v3.0": 512,
|
| 725 |
"DanskBERT": 514,
|
|
|
|
|
|
|
| 726 |
"LASER2": "N/A",
|
| 727 |
"LLM2Vec-Llama-supervised": 4096,
|
| 728 |
"LLM2Vec-Llama-unsupervised": 4096,
|
|
@@ -760,11 +817,15 @@ EXTERNAL_MODEL_TO_SEQLEN = {
|
|
| 760 |
"dfm-sentence-encoder-large-1": 512,
|
| 761 |
"distiluse-base-multilingual-cased-v2": 512,
|
| 762 |
"e5-base": 512,
|
|
|
|
| 763 |
"e5-large": 512,
|
|
|
|
| 764 |
"e5-mistral-7b-instruct": 32768,
|
| 765 |
"e5-small": 512,
|
| 766 |
"electra-small-nordic": 512,
|
| 767 |
"electra-small-swedish-cased-discriminator": 512,
|
|
|
|
|
|
|
| 768 |
"flaubert_base_cased": 512,
|
| 769 |
"flaubert_base_uncased": 512,
|
| 770 |
"flaubert_large_cased": 512,
|
|
@@ -781,11 +842,18 @@ EXTERNAL_MODEL_TO_SEQLEN = {
|
|
| 781 |
"gtr-t5-xl": 512,
|
| 782 |
"gtr-t5-xxl": 512,
|
| 783 |
"herbert-base-retrieval-v2": 514,
|
|
|
|
|
|
|
| 784 |
"komninos": "N/A",
|
|
|
|
| 785 |
"luotuo-bert-medium": 512,
|
| 786 |
"m3e-base": 512,
|
| 787 |
"m3e-large": 512,
|
|
|
|
| 788 |
# "mistral-embed": "?",
|
|
|
|
|
|
|
|
|
|
| 789 |
"msmarco-bert-co-condensor": 512,
|
| 790 |
"multi-qa-MiniLM-L6-cos-v1": 512,
|
| 791 |
"multilingual-e5-base": 514,
|
|
@@ -814,6 +882,8 @@ EXTERNAL_MODEL_TO_SEQLEN = {
|
|
| 814 |
"sup-simcse-bert-base-uncased": 512,
|
| 815 |
"st-polish-paraphrase-from-distilroberta": 514,
|
| 816 |
"st-polish-paraphrase-from-mpnet": 514,
|
|
|
|
|
|
|
| 817 |
"text2vec-base-chinese": 512,
|
| 818 |
"text2vec-large-chinese": 512,
|
| 819 |
"text-embedding-3-large": 8191,
|
|
@@ -849,6 +919,8 @@ EXTERNAL_MODEL_TO_SEQLEN = {
|
|
| 849 |
|
| 850 |
EXTERNAL_MODEL_TO_SIZE = {
|
| 851 |
"DanskBERT": 125,
|
|
|
|
|
|
|
| 852 |
"LASER2": 43,
|
| 853 |
"LLM2Vec-Llama-supervised": 6607,
|
| 854 |
"LLM2Vec-Llama-unsupervised": 6607,
|
|
@@ -872,6 +944,7 @@ EXTERNAL_MODEL_TO_SIZE = {
|
|
| 872 |
"bge-large-zh-v1.5": 326,
|
| 873 |
"bge-large-zh-noinstruct": 326,
|
| 874 |
"bge-small-zh-v1.5": 24,
|
|
|
|
| 875 |
"camembert-base": 111,
|
| 876 |
"camembert-large": 338,
|
| 877 |
"cross-en-de-roberta-sentence-transformer": 278,
|
|
@@ -885,11 +958,15 @@ EXTERNAL_MODEL_TO_SIZE = {
|
|
| 885 |
"dfm-encoder-large-v1": 355,
|
| 886 |
"dfm-sentence-encoder-large-1": 355,
|
| 887 |
"e5-base": 110,
|
|
|
|
| 888 |
"e5-large": 335,
|
|
|
|
| 889 |
"e5-mistral-7b-instruct": 7111,
|
| 890 |
"e5-small": 33,
|
| 891 |
"electra-small-nordic": 23,
|
| 892 |
"electra-small-swedish-cased-discriminator": 16,
|
|
|
|
|
|
|
| 893 |
"flaubert_base_cased": 138,
|
| 894 |
"flaubert_base_uncased": 138,
|
| 895 |
"flaubert_large_cased": 372,
|
|
@@ -906,11 +983,18 @@ EXTERNAL_MODEL_TO_SIZE = {
|
|
| 906 |
"gtr-t5-xl": 1240,
|
| 907 |
"gtr-t5-xxl": 4865,
|
| 908 |
"herbert-base-retrieval-v2": 125,
|
|
|
|
|
|
|
| 909 |
"komninos": 134,
|
|
|
|
| 910 |
"luotuo-bert-medium": 328,
|
| 911 |
"m3e-base": 102,
|
| 912 |
"m3e-large": 102,
|
|
|
|
| 913 |
"msmarco-bert-co-condensor": 110,
|
|
|
|
|
|
|
|
|
|
| 914 |
"multi-qa-MiniLM-L6-cos-v1": 23,
|
| 915 |
"multilingual-e5-base": 278,
|
| 916 |
"multilingual-e5-small": 118,
|
|
@@ -936,7 +1020,9 @@ EXTERNAL_MODEL_TO_SIZE = {
|
|
| 936 |
"silver-retriever-base-v1": 125,
|
| 937 |
"sup-simcse-bert-base-uncased": 110,
|
| 938 |
"st-polish-paraphrase-from-distilroberta": 125,
|
| 939 |
-
"st-polish-paraphrase-from-mpnet": 125,
|
|
|
|
|
|
|
| 940 |
"text2vec-base-chinese": 102,
|
| 941 |
"text2vec-large-chinese": 326,
|
| 942 |
"unsup-simcse-bert-base-uncased": 110,
|
|
@@ -1014,7 +1100,9 @@ SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS = {
|
|
| 1014 |
"dfm-encoder-large-v1",
|
| 1015 |
"dfm-sentence-encoder-large-1",
|
| 1016 |
"e5-base",
|
|
|
|
| 1017 |
"e5-large",
|
|
|
|
| 1018 |
"e5-mistral-7b-instruct",
|
| 1019 |
"e5-small",
|
| 1020 |
"electra-small-nordic",
|
|
@@ -1065,6 +1153,7 @@ SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS = {
|
|
| 1065 |
"sup-simcse-bert-base-uncased",
|
| 1066 |
"st-polish-paraphrase-from-distilroberta",
|
| 1067 |
"st-polish-paraphrase-from-mpnet",
|
|
|
|
| 1068 |
"text2vec-base-chinese",
|
| 1069 |
"text2vec-large-chinese",
|
| 1070 |
"udever-bloom-1b1",
|
|
@@ -1247,6 +1336,8 @@ def add_task(examples):
|
|
| 1247 |
examples["mteb_task"] = "Summarization"
|
| 1248 |
elif examples["mteb_dataset_name"] in norm(TASK_LIST_BITEXT_MINING + TASK_LIST_BITEXT_MINING_DA):
|
| 1249 |
examples["mteb_task"] = "BitextMining"
|
|
|
|
|
|
|
| 1250 |
else:
|
| 1251 |
print("WARNING: Task not found for dataset", examples["mteb_dataset_name"])
|
| 1252 |
examples["mteb_task"] = "Unknown"
|
|
@@ -1333,7 +1424,13 @@ def get_mteb_data(tasks=["Clustering"], langs=[], datasets=[], fillna=True, add_
|
|
| 1333 |
# Initialize list to models that we cannot fetch metadata from
|
| 1334 |
df_list = []
|
| 1335 |
for model in EXTERNAL_MODEL_RESULTS:
|
| 1336 |
-
results_list = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1337 |
if len(datasets) > 0:
|
| 1338 |
res = {k: v for d in results_list for k, v in d.items() if (k == "Model") or any([x in k for x in datasets])}
|
| 1339 |
elif langs:
|
|
@@ -1659,6 +1756,7 @@ DATA_CLASSIFICATION_OTHER = get_mteb_data(["Classification"], [], TASK_LIST_CLAS
|
|
| 1659 |
DATA_CLUSTERING_DE = get_mteb_data(["Clustering"], [], TASK_LIST_CLUSTERING_DE)[["Rank", "Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)", "Average"] + TASK_LIST_CLUSTERING_DE]
|
| 1660 |
DATA_STS_OTHER = get_mteb_data(["STS"], [], TASK_LIST_STS_OTHER)[["Rank", "Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)", "Average"] + TASK_LIST_STS_OTHER]
|
| 1661 |
DATA_RETRIEVAL_LAW = get_mteb_data(["Retrieval"], [], TASK_LIST_RETRIEVAL_LAW)[["Rank", "Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)", "Average"] + TASK_LIST_RETRIEVAL_LAW]
|
|
|
|
| 1662 |
|
| 1663 |
# Exact, add all non-nan integer values for every dataset
|
| 1664 |
NUM_SCORES = 0
|
|
@@ -1693,6 +1791,7 @@ for d in [
|
|
| 1693 |
DATA_RETRIEVAL_PL,
|
| 1694 |
DATA_RETRIEVAL_ZH,
|
| 1695 |
DATA_RETRIEVAL_LAW,
|
|
|
|
| 1696 |
DATA_STS_EN,
|
| 1697 |
DATA_STS_FR,
|
| 1698 |
DATA_STS_PL,
|
|
@@ -1751,6 +1850,7 @@ french_credits = "[Lyon-NLP](https://github.com/Lyon-NLP): [Gabriel Sequeira](ht
|
|
| 1751 |
danish_credits = "[Kenneth Enevoldsen](https://github.com/KennethEnevoldsen), [scandinavian-embedding-benchmark](https://kennethenevoldsen.github.io/scandinavian-embedding-benchmark/)"
|
| 1752 |
norwegian_credits = "[Kenneth Enevoldsen](https://github.com/KennethEnevoldsen), [scandinavian-embedding-benchmark](https://kennethenevoldsen.github.io/scandinavian-embedding-benchmark/)"
|
| 1753 |
polish_credits = "[Rafał Poświata](https://github.com/rafalposwiata)"
|
|
|
|
| 1754 |
|
| 1755 |
data = {
|
| 1756 |
"Overall": {
|
|
@@ -2057,6 +2157,18 @@ data = {
|
|
| 2057 |
"refresh": partial(get_mteb_data, tasks=TASK_LIST_SUMMARIZATION_FR)
|
| 2058 |
}
|
| 2059 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2060 |
}
|
| 2061 |
}
|
| 2062 |
|
|
|
|
| 226 |
"LegalSummarization",
|
| 227 |
]
|
| 228 |
|
| 229 |
+
TASK_LIST_RETRIEVAL_INSTRUCTIONS = [
|
| 230 |
+
"Robust04InstructionRetrieval",
|
| 231 |
+
"News21InstructionRetrieval",
|
| 232 |
+
"Core17InstructionRetrieval",
|
| 233 |
+
]
|
| 234 |
+
|
| 235 |
TASK_LIST_RETRIEVAL_PL = [
|
| 236 |
"ArguAna-PL",
|
| 237 |
"DBPedia-PL",
|
|
|
|
| 328 |
"Retrieval": "ndcg_at_10",
|
| 329 |
"STS": "cos_sim_spearman",
|
| 330 |
"Summarization": "cos_sim_spearman",
|
| 331 |
+
"InstructionRetrieval": "p-MRR",
|
| 332 |
}
|
| 333 |
|
| 334 |
def make_clickable_model(model_name, link=None):
|
|
|
|
| 346 |
"Cohere-embed-multilingual-v3.0",
|
| 347 |
"Cohere-embed-multilingual-light-v3.0",
|
| 348 |
"DanskBERT",
|
| 349 |
+
"FollowIR-7B",
|
| 350 |
+
"GritLM-7B",
|
| 351 |
"LASER2",
|
| 352 |
"LLM2Vec-Llama-supervised",
|
| 353 |
"LLM2Vec-Llama-unsupervised",
|
|
|
|
| 373 |
"bge-large-zh-v1.5",
|
| 374 |
"bge-large-zh-noinstruct",
|
| 375 |
"bge-small-zh-v1.5",
|
| 376 |
+
"bm25",
|
| 377 |
"contriever-base-msmarco",
|
| 378 |
"cross-en-de-roberta-sentence-transformer",
|
| 379 |
"dfm-encoder-large-v1",
|
| 380 |
"dfm-sentence-encoder-large-1",
|
| 381 |
"distiluse-base-multilingual-cased-v2",
|
| 382 |
"e5-base",
|
| 383 |
+
"e5-base-v2",
|
| 384 |
"e5-large",
|
| 385 |
+
"e5-large-v2",
|
| 386 |
"e5-mistral-7b-instruct",
|
| 387 |
"e5-small",
|
| 388 |
"electra-small-nordic",
|
| 389 |
"electra-small-swedish-cased-discriminator",
|
| 390 |
+
"flan-t5-base",
|
| 391 |
+
"flan-t5-large",
|
| 392 |
"flaubert_base_cased",
|
| 393 |
"flaubert_base_uncased",
|
| 394 |
"flaubert_large_cased",
|
|
|
|
| 405 |
"gtr-t5-xl",
|
| 406 |
"gtr-t5-xxl",
|
| 407 |
"herbert-base-retrieval-v2",
|
| 408 |
+
"instructor-base",
|
| 409 |
+
"instructor-xl",
|
| 410 |
"komninos",
|
| 411 |
+
"llama-2-7b-chat",
|
| 412 |
"luotuo-bert-medium",
|
| 413 |
"m3e-base",
|
| 414 |
"m3e-large",
|
| 415 |
+
"mistral-7b-instruct-v0.2",
|
| 416 |
"mistral-embed",
|
| 417 |
+
"monobert-large-msmarco",
|
| 418 |
+
"monot5-3b-msmarco-10k",
|
| 419 |
+
"monot5-base-msmarco-10k",
|
| 420 |
"msmarco-bert-co-condensor",
|
| 421 |
"multi-qa-MiniLM-L6-cos-v1",
|
| 422 |
"multilingual-e5-base",
|
|
|
|
| 444 |
"sup-simcse-bert-base-uncased",
|
| 445 |
"st-polish-paraphrase-from-distilroberta",
|
| 446 |
"st-polish-paraphrase-from-mpnet",
|
| 447 |
+
"tart-dual-contriever-msmarco",
|
| 448 |
+
"tart-full-flan-t5-xl",
|
| 449 |
"text2vec-base-chinese",
|
| 450 |
"text2vec-base-multilingual",
|
| 451 |
"text2vec-large-chinese",
|
|
|
|
| 493 |
"LLM2Vec-Sheared-Llama-supervised": "https://huggingface.co/McGill-NLP/LLM2Vec-Sheared-LLaMA-mntp-supervised",
|
| 494 |
"LLM2Vec-Sheared-Llama-unsupervised": "https://huggingface.co/McGill-NLP/LLM2Vec-Sheared-LLaMA-mntp",
|
| 495 |
"LaBSE": "https://huggingface.co/sentence-transformers/LaBSE",
|
| 496 |
+
"FollowIR-7B": "https://huggingface.co/jhu-clsp/FollowIR-7B",
|
| 497 |
+
"GritLM-7B": "https://huggingface.co/GritLM/GritLM-7B",
|
| 498 |
"OpenSearch-text-hybrid": "https://help.aliyun.com/zh/open-search/vector-search-edition/hybrid-retrieval",
|
| 499 |
"allenai-specter": "https://huggingface.co/sentence-transformers/allenai-specter",
|
| 500 |
"allenai-specter": "https://huggingface.co/sentence-transformers/allenai-specter",
|
|
|
|
| 513 |
"bge-large-zh-v1.5": "https://huggingface.co/BAAI/bge-large-zh-v1.5",
|
| 514 |
"bge-large-zh-noinstruct": "https://huggingface.co/BAAI/bge-large-zh-noinstruct",
|
| 515 |
"bge-small-zh-v1.5": "https://huggingface.co/BAAI/bge-small-zh-v1.5",
|
| 516 |
+
"bm25": "https://en.wikipedia.org/wiki/Okapi_BM25",
|
| 517 |
"camembert-base": "https://huggingface.co/almanach/camembert-base",
|
| 518 |
"camembert-large": "https://huggingface.co/almanach/camembert-large",
|
| 519 |
"contriever-base-msmarco": "https://huggingface.co/nthakur/contriever-base-msmarco",
|
|
|
|
| 527 |
"dfm-encoder-large-v1": "https://huggingface.co/chcaa/dfm-encoder-large-v1",
|
| 528 |
"dfm-sentence-encoder-large-1": "https://huggingface.co/chcaa/dfm-encoder-large-v1",
|
| 529 |
"e5-base": "https://huggingface.co/intfloat/e5-base",
|
| 530 |
+
"e5-base-v2": "https://huggingface.co/intfloat/e5-base-v2",
|
| 531 |
"e5-large": "https://huggingface.co/intfloat/e5-large",
|
| 532 |
+
"e5-large-v2": "https://huggingface.co/intfloat/e5-large-v2",
|
| 533 |
"e5-mistral-7b-instruct": "https://huggingface.co/intfloat/e5-mistral-7b-instruct",
|
| 534 |
"e5-small": "https://huggingface.co/intfloat/e5-small",
|
| 535 |
"electra-small-nordic": "https://huggingface.co/jonfd/electra-small-nordic",
|
| 536 |
"electra-small-swedish-cased-discriminator": "https://huggingface.co/KBLab/electra-small-swedish-cased-discriminator",
|
| 537 |
+
"flan-t5-base": "https://huggingface.co/google/flan-t5-base",
|
| 538 |
+
"flan-t5-large": "https://huggingface.co/google/flan-t5-large",
|
| 539 |
"flaubert_base_cased": "https://huggingface.co/flaubert/flaubert_base_cased",
|
| 540 |
"flaubert_base_uncased": "https://huggingface.co/flaubert/flaubert_base_uncased",
|
| 541 |
"flaubert_large_cased": "https://huggingface.co/flaubert/flaubert_large_cased",
|
|
|
|
| 552 |
"gtr-t5-xl": "https://huggingface.co/sentence-transformers/gtr-t5-xl",
|
| 553 |
"gtr-t5-xxl": "https://huggingface.co/sentence-transformers/gtr-t5-xxl",
|
| 554 |
"herbert-base-retrieval-v2": "https://huggingface.co/ipipan/herbert-base-retrieval-v2",
|
| 555 |
+
"instructor-base": "https://huggingface.co/hkunlp/instructor-base",
|
| 556 |
+
"instructor-xl": "https://huggingface.co/hkunlp/instructor-xl",
|
| 557 |
"komninos": "https://huggingface.co/sentence-transformers/average_word_embeddings_komninos",
|
| 558 |
+
"llama-2-7b-chat": "https://huggingface.co/meta-llama/Llama-2-7b-chat-hf",
|
| 559 |
"luotuo-bert-medium": "https://huggingface.co/silk-road/luotuo-bert-medium",
|
| 560 |
"m3e-base": "https://huggingface.co/moka-ai/m3e-base",
|
| 561 |
"m3e-large": "https://huggingface.co/moka-ai/m3e-large",
|
| 562 |
+
"mistral-7b-instruct-v0.2": "https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2",
|
| 563 |
"mistral-embed": "https://docs.mistral.ai/guides/embeddings",
|
| 564 |
+
"monobert-large-msmarco": "https://huggingface.co/castorini/monobert-large-msmarco",
|
| 565 |
+
"monot5-3b-msmarco-10k": "https://huggingface.co/castorini/monot5-3b-msmarco-10k",
|
| 566 |
+
"monot5-base-msmarco-10k": "https://huggingface.co/castorini/monot5-base-msmarco-10k",
|
| 567 |
"msmarco-bert-co-condensor": "https://huggingface.co/sentence-transformers/msmarco-bert-co-condensor",
|
| 568 |
"multi-qa-MiniLM-L6-cos-v1": "https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-cos-v1",
|
| 569 |
"multilingual-e5-base": "https://huggingface.co/intfloat/multilingual-e5-base",
|
|
|
|
| 591 |
"sup-simcse-bert-base-uncased": "https://huggingface.co/princeton-nlp/sup-simcse-bert-base-uncased",
|
| 592 |
"st-polish-paraphrase-from-distilroberta": "https://huggingface.co/sdadas/st-polish-paraphrase-from-distilroberta",
|
| 593 |
"st-polish-paraphrase-from-mpnet": "https://huggingface.co/sdadas/st-polish-paraphrase-from-mpnet",
|
| 594 |
+
"tart-dual-contriever-msmarco": "https://huggingface.co/orionweller/tart-dual-contriever-msmarco",
|
| 595 |
+
"tart-full-flan-t5-xl": "https://huggingface.co/facebook/tart-full-flan-t5-xl",
|
| 596 |
"text2vec-base-chinese": "https://huggingface.co/shibing624/text2vec-base-chinese",
|
| 597 |
"text2vec-large-chinese": "https://huggingface.co/GanymedeNil/text2vec-large-chinese",
|
| 598 |
"text-embedding-3-small": "https://openai.com/blog/new-embedding-models-and-api-updates",
|
|
|
|
| 632 |
"Cohere-embed-multilingual-v3.0": 1024,
|
| 633 |
"Cohere-embed-multilingual-light-v3.0": 384,
|
| 634 |
"DanskBERT": 768,
|
| 635 |
+
"FollowIR-7B": -1,
|
| 636 |
+
"GritLM-7B": 4096,
|
| 637 |
"LASER2": 1024,
|
| 638 |
"LLM2Vec-Llama-supervised": 4096,
|
| 639 |
"LLM2Vec-Llama-unsupervised": 4096,
|
|
|
|
| 658 |
"bge-large-zh-v1.5": 1024,
|
| 659 |
"bge-large-zh-noinstruct": 1024,
|
| 660 |
"bge-small-zh-v1.5": 512,
|
| 661 |
+
"bm25": -1,
|
| 662 |
"camembert-base": 512,
|
| 663 |
"camembert-large": 768,
|
| 664 |
"contriever-base-msmarco": 768,
|
|
|
|
| 672 |
"dfm-encoder-large-v1": 1024,
|
| 673 |
"dfm-sentence-encoder-large-1": 1024,
|
| 674 |
"e5-base": 768,
|
| 675 |
+
"e5-base-v2": 768,
|
| 676 |
"e5-large": 1024,
|
| 677 |
+
"e5-large-v2": 1024,
|
| 678 |
"e5-mistral-7b-instruct": 4096,
|
| 679 |
"e5-small": 384,
|
| 680 |
"electra-small-nordic": 256,
|
| 681 |
"electra-small-swedish-cased-discriminator": 256,
|
| 682 |
+
"flan-t5-base": -1,
|
| 683 |
+
"flan-t5-large": -1,
|
| 684 |
"flaubert_base_cased": 768,
|
| 685 |
"flaubert_base_uncased": 768,
|
| 686 |
"flaubert_large_cased": 1024,
|
|
|
|
| 698 |
"gtr-t5-xl": 768,
|
| 699 |
"gtr-t5-xxl": 768,
|
| 700 |
"herbert-base-retrieval-v2": 768,
|
| 701 |
+
"instructor-base": 768,
|
| 702 |
+
"instructor-xl": 768,
|
| 703 |
"komninos": 300,
|
| 704 |
+
"llama-2-7b-chat": -1,
|
| 705 |
"m3e-base": 768,
|
| 706 |
"m3e-large": 768,
|
| 707 |
+
"mistral-7b-instruct-v0.2": -1,
|
| 708 |
"mistral-embed": 1024,
|
| 709 |
+
"monobert-large-msmarco": -1,
|
| 710 |
+
"monot5-3b-msmarco-10k": -1,
|
| 711 |
+
"monot5-base-msmarco-10k": -1,
|
| 712 |
"msmarco-bert-co-condensor": 768,
|
| 713 |
"multi-qa-MiniLM-L6-cos-v1": 384,
|
| 714 |
"multilingual-e5-base": 768,
|
|
|
|
| 737 |
"sup-simcse-bert-base-uncased": 768,
|
| 738 |
"st-polish-paraphrase-from-distilroberta": 768,
|
| 739 |
"st-polish-paraphrase-from-mpnet": 768,
|
| 740 |
+
"tart-dual-contriever-msmarco": 768,
|
| 741 |
+
"tart-full-flan-t5-xl": -1,
|
| 742 |
"text2vec-base-chinese": 768,
|
| 743 |
"text2vec-large-chinese": 1024,
|
| 744 |
"text-embedding-3-large": 3072,
|
|
|
|
| 778 |
"Cohere-embed-multilingual-v3.0": 512,
|
| 779 |
"Cohere-embed-multilingual-light-v3.0": 512,
|
| 780 |
"DanskBERT": 514,
|
| 781 |
+
"FollowIR-7B": 32768,
|
| 782 |
+
"GritLM-7B": 32768,
|
| 783 |
"LASER2": "N/A",
|
| 784 |
"LLM2Vec-Llama-supervised": 4096,
|
| 785 |
"LLM2Vec-Llama-unsupervised": 4096,
|
|
|
|
| 817 |
"dfm-sentence-encoder-large-1": 512,
|
| 818 |
"distiluse-base-multilingual-cased-v2": 512,
|
| 819 |
"e5-base": 512,
|
| 820 |
+
"e5-base-v2": 512,
|
| 821 |
"e5-large": 512,
|
| 822 |
+
"e5-large-v2": 512,
|
| 823 |
"e5-mistral-7b-instruct": 32768,
|
| 824 |
"e5-small": 512,
|
| 825 |
"electra-small-nordic": 512,
|
| 826 |
"electra-small-swedish-cased-discriminator": 512,
|
| 827 |
+
"flan-t5-base": 512,
|
| 828 |
+
"flan-t5-large": 512,
|
| 829 |
"flaubert_base_cased": 512,
|
| 830 |
"flaubert_base_uncased": 512,
|
| 831 |
"flaubert_large_cased": 512,
|
|
|
|
| 842 |
"gtr-t5-xl": 512,
|
| 843 |
"gtr-t5-xxl": 512,
|
| 844 |
"herbert-base-retrieval-v2": 514,
|
| 845 |
+
"instructor-base": 512,
|
| 846 |
+
"instructor-xl": 512,
|
| 847 |
"komninos": "N/A",
|
| 848 |
+
"llama-2-7b-chat": 4096,
|
| 849 |
"luotuo-bert-medium": 512,
|
| 850 |
"m3e-base": 512,
|
| 851 |
"m3e-large": 512,
|
| 852 |
+
"mistral-7b-instruct-v0.2": 32768,
|
| 853 |
# "mistral-embed": "?",
|
| 854 |
+
"monobert-large-msmarco": 512,
|
| 855 |
+
"monot5-3b-msmarco-10k": 512,
|
| 856 |
+
"monot5-base-msmarco-10k": 512,
|
| 857 |
"msmarco-bert-co-condensor": 512,
|
| 858 |
"multi-qa-MiniLM-L6-cos-v1": 512,
|
| 859 |
"multilingual-e5-base": 514,
|
|
|
|
| 882 |
"sup-simcse-bert-base-uncased": 512,
|
| 883 |
"st-polish-paraphrase-from-distilroberta": 514,
|
| 884 |
"st-polish-paraphrase-from-mpnet": 514,
|
| 885 |
+
"tart-dual-contriever-msmarco": 512,
|
| 886 |
+
"tart-full-flan-t5-xl": 512,
|
| 887 |
"text2vec-base-chinese": 512,
|
| 888 |
"text2vec-large-chinese": 512,
|
| 889 |
"text-embedding-3-large": 8191,
|
|
|
|
| 919 |
|
| 920 |
EXTERNAL_MODEL_TO_SIZE = {
|
| 921 |
"DanskBERT": 125,
|
| 922 |
+
"FollowIR-7B": 7242,
|
| 923 |
+
"GritLM-7B": 7242,
|
| 924 |
"LASER2": 43,
|
| 925 |
"LLM2Vec-Llama-supervised": 6607,
|
| 926 |
"LLM2Vec-Llama-unsupervised": 6607,
|
|
|
|
| 944 |
"bge-large-zh-v1.5": 326,
|
| 945 |
"bge-large-zh-noinstruct": 326,
|
| 946 |
"bge-small-zh-v1.5": 24,
|
| 947 |
+
"bm25": 0,
|
| 948 |
"camembert-base": 111,
|
| 949 |
"camembert-large": 338,
|
| 950 |
"cross-en-de-roberta-sentence-transformer": 278,
|
|
|
|
| 958 |
"dfm-encoder-large-v1": 355,
|
| 959 |
"dfm-sentence-encoder-large-1": 355,
|
| 960 |
"e5-base": 110,
|
| 961 |
+
"e5-base-v2": 110,
|
| 962 |
"e5-large": 335,
|
| 963 |
+
"e5-large-v2": 335,
|
| 964 |
"e5-mistral-7b-instruct": 7111,
|
| 965 |
"e5-small": 33,
|
| 966 |
"electra-small-nordic": 23,
|
| 967 |
"electra-small-swedish-cased-discriminator": 16,
|
| 968 |
+
"flan-t5-base": 220,
|
| 969 |
+
"flan-t5-large": 770,
|
| 970 |
"flaubert_base_cased": 138,
|
| 971 |
"flaubert_base_uncased": 138,
|
| 972 |
"flaubert_large_cased": 372,
|
|
|
|
| 983 |
"gtr-t5-xl": 1240,
|
| 984 |
"gtr-t5-xxl": 4865,
|
| 985 |
"herbert-base-retrieval-v2": 125,
|
| 986 |
+
"instructor-base": 110,
|
| 987 |
+
"instructor-xl": 1241,
|
| 988 |
"komninos": 134,
|
| 989 |
+
"llama-2-7b-chat": 7000,
|
| 990 |
"luotuo-bert-medium": 328,
|
| 991 |
"m3e-base": 102,
|
| 992 |
"m3e-large": 102,
|
| 993 |
+
"mistral-7b-instruct-v0.2": 7111,
|
| 994 |
"msmarco-bert-co-condensor": 110,
|
| 995 |
+
"monobert-large-msmarco": 335,
|
| 996 |
+
"monot5-3b-msmarco-10k": 2480,
|
| 997 |
+
"monot5-base-msmarco-10k": 220,
|
| 998 |
"multi-qa-MiniLM-L6-cos-v1": 23,
|
| 999 |
"multilingual-e5-base": 278,
|
| 1000 |
"multilingual-e5-small": 118,
|
|
|
|
| 1020 |
"silver-retriever-base-v1": 125,
|
| 1021 |
"sup-simcse-bert-base-uncased": 110,
|
| 1022 |
"st-polish-paraphrase-from-distilroberta": 125,
|
| 1023 |
+
"st-polish-paraphrase-from-mpnet": 125,
|
| 1024 |
+
"tart-dual-contriever-msmarco": 110,
|
| 1025 |
+
"tart-full-flan-t5-xl": 2480,
|
| 1026 |
"text2vec-base-chinese": 102,
|
| 1027 |
"text2vec-large-chinese": 326,
|
| 1028 |
"unsup-simcse-bert-base-uncased": 110,
|
|
|
|
| 1100 |
"dfm-encoder-large-v1",
|
| 1101 |
"dfm-sentence-encoder-large-1",
|
| 1102 |
"e5-base",
|
| 1103 |
+
"e5-base-v2",
|
| 1104 |
"e5-large",
|
| 1105 |
+
"e5-large-v2",
|
| 1106 |
"e5-mistral-7b-instruct",
|
| 1107 |
"e5-small",
|
| 1108 |
"electra-small-nordic",
|
|
|
|
| 1153 |
"sup-simcse-bert-base-uncased",
|
| 1154 |
"st-polish-paraphrase-from-distilroberta",
|
| 1155 |
"st-polish-paraphrase-from-mpnet",
|
| 1156 |
+
"tart-dual-contriever-msmarco",
|
| 1157 |
"text2vec-base-chinese",
|
| 1158 |
"text2vec-large-chinese",
|
| 1159 |
"udever-bloom-1b1",
|
|
|
|
| 1336 |
examples["mteb_task"] = "Summarization"
|
| 1337 |
elif examples["mteb_dataset_name"] in norm(TASK_LIST_BITEXT_MINING + TASK_LIST_BITEXT_MINING_DA):
|
| 1338 |
examples["mteb_task"] = "BitextMining"
|
| 1339 |
+
elif examples["mteb_dataset_name"] in norm(TASK_LIST_RETRIEVAL_INSTRUCTIONS):
|
| 1340 |
+
examples["mteb_task"] = "InstructionRetrieval"
|
| 1341 |
else:
|
| 1342 |
print("WARNING: Task not found for dataset", examples["mteb_dataset_name"])
|
| 1343 |
examples["mteb_task"] = "Unknown"
|
|
|
|
| 1424 |
# Initialize list to models that we cannot fetch metadata from
|
| 1425 |
df_list = []
|
| 1426 |
for model in EXTERNAL_MODEL_RESULTS:
|
| 1427 |
+
results_list = []
|
| 1428 |
+
for task in tasks:
|
| 1429 |
+
# Not all models have InstructionRetrieval, other new tasks
|
| 1430 |
+
if task not in EXTERNAL_MODEL_RESULTS[model]:
|
| 1431 |
+
continue
|
| 1432 |
+
results_list += EXTERNAL_MODEL_RESULTS[model][task][task_to_metric[task]]
|
| 1433 |
+
|
| 1434 |
if len(datasets) > 0:
|
| 1435 |
res = {k: v for d in results_list for k, v in d.items() if (k == "Model") or any([x in k for x in datasets])}
|
| 1436 |
elif langs:
|
|
|
|
| 1756 |
DATA_CLUSTERING_DE = get_mteb_data(["Clustering"], [], TASK_LIST_CLUSTERING_DE)[["Rank", "Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)", "Average"] + TASK_LIST_CLUSTERING_DE]
|
| 1757 |
DATA_STS_OTHER = get_mteb_data(["STS"], [], TASK_LIST_STS_OTHER)[["Rank", "Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)", "Average"] + TASK_LIST_STS_OTHER]
|
| 1758 |
DATA_RETRIEVAL_LAW = get_mteb_data(["Retrieval"], [], TASK_LIST_RETRIEVAL_LAW)[["Rank", "Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)", "Average"] + TASK_LIST_RETRIEVAL_LAW]
|
| 1759 |
+
DATA_RETRIEVAL_INSTRUCTIONS = get_mteb_data(["InstructionRetrieval"], [], TASK_LIST_RETRIEVAL_INSTRUCTIONS)[["Rank", "Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)", "Average"] + TASK_LIST_RETRIEVAL_INSTRUCTIONS]
|
| 1760 |
|
| 1761 |
# Exact, add all non-nan integer values for every dataset
|
| 1762 |
NUM_SCORES = 0
|
|
|
|
| 1791 |
DATA_RETRIEVAL_PL,
|
| 1792 |
DATA_RETRIEVAL_ZH,
|
| 1793 |
DATA_RETRIEVAL_LAW,
|
| 1794 |
+
DATA_RETRIEVAL_INSTRUCTIONS,
|
| 1795 |
DATA_STS_EN,
|
| 1796 |
DATA_STS_FR,
|
| 1797 |
DATA_STS_PL,
|
|
|
|
| 1850 |
danish_credits = "[Kenneth Enevoldsen](https://github.com/KennethEnevoldsen), [scandinavian-embedding-benchmark](https://kennethenevoldsen.github.io/scandinavian-embedding-benchmark/)"
|
| 1851 |
norwegian_credits = "[Kenneth Enevoldsen](https://github.com/KennethEnevoldsen), [scandinavian-embedding-benchmark](https://kennethenevoldsen.github.io/scandinavian-embedding-benchmark/)"
|
| 1852 |
polish_credits = "[Rafał Poświata](https://github.com/rafalposwiata)"
|
| 1853 |
+
instruction_credits = "[Orion Weller, FollowIR paper](https://arxiv.org/abs/2403.15246)"
|
| 1854 |
|
| 1855 |
data = {
|
| 1856 |
"Overall": {
|
|
|
|
| 2157 |
"refresh": partial(get_mteb_data, tasks=TASK_LIST_SUMMARIZATION_FR)
|
| 2158 |
}
|
| 2159 |
]
|
| 2160 |
+
},
|
| 2161 |
+
"Retrieval w/Instructions": {
|
| 2162 |
+
"metric": "paired mean reciprocal rank (p-MRR)",
|
| 2163 |
+
"data": [
|
| 2164 |
+
{
|
| 2165 |
+
"language": "English",
|
| 2166 |
+
"description": "**Retrieval with Instructions Leaderboard** 🔎📋",
|
| 2167 |
+
"credits": instruction_credits,
|
| 2168 |
+
"data": DATA_RETRIEVAL_INSTRUCTIONS,
|
| 2169 |
+
"refresh": partial(get_mteb_data, tasks=TASK_LIST_RETRIEVAL_INSTRUCTIONS)
|
| 2170 |
+
}
|
| 2171 |
+
]
|
| 2172 |
}
|
| 2173 |
}
|
| 2174 |
|