Spaces:
Runtime error
Runtime error
added main
Browse files
main.py
ADDED
|
@@ -0,0 +1,769 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse, os, sys, datetime, glob, importlib, csv
|
| 2 |
+
import numpy as np
|
| 3 |
+
import time
|
| 4 |
+
import torch
|
| 5 |
+
import torchvision
|
| 6 |
+
import pytorch_lightning as pl
|
| 7 |
+
|
| 8 |
+
from packaging import version
|
| 9 |
+
from omegaconf import OmegaConf
|
| 10 |
+
from torch.utils.data import random_split, DataLoader, Dataset, Subset
|
| 11 |
+
from functools import partial
|
| 12 |
+
from PIL import Image
|
| 13 |
+
|
| 14 |
+
from pytorch_lightning import seed_everything
|
| 15 |
+
from pytorch_lightning.trainer import Trainer
|
| 16 |
+
from pytorch_lightning.callbacks import ModelCheckpoint, Callback, LearningRateMonitor
|
| 17 |
+
from pytorch_lightning.utilities.distributed import rank_zero_only
|
| 18 |
+
from pytorch_lightning.utilities import rank_zero_info
|
| 19 |
+
import ldm.data.constants as CONSTANTS
|
| 20 |
+
|
| 21 |
+
from ldm.data.base import Txt2ImgIterableBaseDataset
|
| 22 |
+
from ldm.util import instantiate_from_config
|
| 23 |
+
|
| 24 |
+
def get_monitor(target):
|
| 25 |
+
return "val" + CONSTANTS.RECLOSS
|
| 26 |
+
|
| 27 |
+
def get_parser(**parser_kwargs):
|
| 28 |
+
def str2bool(v):
|
| 29 |
+
if isinstance(v, bool):
|
| 30 |
+
return v
|
| 31 |
+
if v.lower() in ("yes", "true", "t", "y", "1"):
|
| 32 |
+
return True
|
| 33 |
+
elif v.lower() in ("no", "false", "f", "n", "0"):
|
| 34 |
+
return False
|
| 35 |
+
else:
|
| 36 |
+
raise argparse.ArgumentTypeError("Boolean value expected.")
|
| 37 |
+
|
| 38 |
+
parser = argparse.ArgumentParser(**parser_kwargs)
|
| 39 |
+
parser.add_argument(
|
| 40 |
+
"-n",
|
| 41 |
+
"--name",
|
| 42 |
+
type=str,
|
| 43 |
+
const=True,
|
| 44 |
+
default="",
|
| 45 |
+
nargs="?",
|
| 46 |
+
help="postfix for logdir",
|
| 47 |
+
)
|
| 48 |
+
parser.add_argument(
|
| 49 |
+
"-r",
|
| 50 |
+
"--resume",
|
| 51 |
+
type=str,
|
| 52 |
+
const=True,
|
| 53 |
+
default="",
|
| 54 |
+
nargs="?",
|
| 55 |
+
help="resume from logdir or checkpoint in logdir",
|
| 56 |
+
)
|
| 57 |
+
parser.add_argument(
|
| 58 |
+
"-b",
|
| 59 |
+
"--base",
|
| 60 |
+
nargs="*",
|
| 61 |
+
metavar="base_config.yaml",
|
| 62 |
+
help="paths to base configs. Loaded from left-to-right. "
|
| 63 |
+
"Parameters can be overwritten or added with command-line options of the form `--key value`.",
|
| 64 |
+
default=list(),
|
| 65 |
+
)
|
| 66 |
+
parser.add_argument(
|
| 67 |
+
"-t",
|
| 68 |
+
"--train",
|
| 69 |
+
type=str2bool,
|
| 70 |
+
const=True,
|
| 71 |
+
default=False,
|
| 72 |
+
nargs="?",
|
| 73 |
+
help="train",
|
| 74 |
+
)
|
| 75 |
+
parser.add_argument(
|
| 76 |
+
"--no-test",
|
| 77 |
+
type=str2bool,
|
| 78 |
+
const=True,
|
| 79 |
+
default=False,
|
| 80 |
+
nargs="?",
|
| 81 |
+
help="disable test",
|
| 82 |
+
)
|
| 83 |
+
parser.add_argument(
|
| 84 |
+
"-p",
|
| 85 |
+
"--project",
|
| 86 |
+
help="name of new or path to existing project"
|
| 87 |
+
)
|
| 88 |
+
parser.add_argument(
|
| 89 |
+
"-d",
|
| 90 |
+
"--debug",
|
| 91 |
+
type=str2bool,
|
| 92 |
+
nargs="?",
|
| 93 |
+
const=True,
|
| 94 |
+
default=False,
|
| 95 |
+
help="enable post-mortem debugging",
|
| 96 |
+
)
|
| 97 |
+
parser.add_argument(
|
| 98 |
+
"-s",
|
| 99 |
+
"--seed",
|
| 100 |
+
type=int,
|
| 101 |
+
default=23,
|
| 102 |
+
help="seed for seed_everything",
|
| 103 |
+
)
|
| 104 |
+
parser.add_argument(
|
| 105 |
+
"-f",
|
| 106 |
+
"--postfix",
|
| 107 |
+
type=str,
|
| 108 |
+
default="",
|
| 109 |
+
help="post-postfix for default name",
|
| 110 |
+
)
|
| 111 |
+
parser.add_argument(
|
| 112 |
+
"-l",
|
| 113 |
+
"--logdir",
|
| 114 |
+
type=str,
|
| 115 |
+
default="logs",
|
| 116 |
+
help="directory for logging dat shit",
|
| 117 |
+
)
|
| 118 |
+
parser.add_argument(
|
| 119 |
+
"--scale_lr",
|
| 120 |
+
type=str2bool,
|
| 121 |
+
nargs="?",
|
| 122 |
+
const=True,
|
| 123 |
+
default=True,
|
| 124 |
+
help="scale base-lr by ngpu * batch_size * n_accumulate",
|
| 125 |
+
)
|
| 126 |
+
return parser
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
def nondefault_trainer_args(opt):
|
| 130 |
+
parser = argparse.ArgumentParser()
|
| 131 |
+
parser = Trainer.add_argparse_args(parser)
|
| 132 |
+
args = parser.parse_args([])
|
| 133 |
+
return sorted(k for k in vars(args) if getattr(opt, k) != getattr(args, k))
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
class WrappedDataset(Dataset):
|
| 137 |
+
"""Wraps an arbitrary object with __len__ and __getitem__ into a pytorch dataset"""
|
| 138 |
+
|
| 139 |
+
def __init__(self, dataset):
|
| 140 |
+
self.data = dataset
|
| 141 |
+
|
| 142 |
+
def __len__(self):
|
| 143 |
+
return len(self.data)
|
| 144 |
+
|
| 145 |
+
def __getitem__(self, idx):
|
| 146 |
+
return self.data[idx]
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
def worker_init_fn(_):
|
| 150 |
+
worker_info = torch.utils.data.get_worker_info()
|
| 151 |
+
|
| 152 |
+
dataset = worker_info.dataset
|
| 153 |
+
worker_id = worker_info.id
|
| 154 |
+
|
| 155 |
+
if isinstance(dataset, Txt2ImgIterableBaseDataset):
|
| 156 |
+
split_size = dataset.num_records // worker_info.num_workers
|
| 157 |
+
# reset num_records to the true number to retain reliable length information
|
| 158 |
+
dataset.sample_ids = dataset.valid_ids[worker_id * split_size:(worker_id + 1) * split_size]
|
| 159 |
+
current_id = np.random.choice(len(np.random.get_state()[1]), 1)
|
| 160 |
+
return np.random.seed(np.random.get_state()[1][current_id] + worker_id)
|
| 161 |
+
else:
|
| 162 |
+
return np.random.seed(np.random.get_state()[1][0] + worker_id)
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
class DataModuleFromConfig(pl.LightningDataModule):
|
| 166 |
+
def __init__(self, batch_size, train=None, validation=None, test=None, predict=None,
|
| 167 |
+
wrap=False, num_workers=None, shuffle_test_loader=False, use_worker_init_fn=False,
|
| 168 |
+
shuffle_val_dataloader=False):
|
| 169 |
+
super().__init__()
|
| 170 |
+
self.batch_size = batch_size
|
| 171 |
+
self.dataset_configs = dict()
|
| 172 |
+
self.num_workers = num_workers if num_workers is not None else batch_size * 2
|
| 173 |
+
self.use_worker_init_fn = use_worker_init_fn
|
| 174 |
+
if train is not None:
|
| 175 |
+
self.dataset_configs["train"] = train
|
| 176 |
+
self.train_dataloader = self._train_dataloader
|
| 177 |
+
if validation is not None:
|
| 178 |
+
self.dataset_configs["validation"] = validation
|
| 179 |
+
# self.val_dataloader = partial(self._val_dataloader, shuffle=shuffle_val_dataloader)
|
| 180 |
+
self.val_dataloader = self._val_dataloader
|
| 181 |
+
if test is not None:
|
| 182 |
+
self.dataset_configs["test"] = test
|
| 183 |
+
# self.test_dataloader = partial(self._test_dataloader, shuffle=shuffle_test_loader)
|
| 184 |
+
self.test_dataloader = self._test_dataloader
|
| 185 |
+
if predict is not None:
|
| 186 |
+
self.dataset_configs["predict"] = predict
|
| 187 |
+
self.predict_dataloader = self._predict_dataloader
|
| 188 |
+
self.wrap = wrap
|
| 189 |
+
|
| 190 |
+
def prepare_data(self):
|
| 191 |
+
for data_cfg in self.dataset_configs.values():
|
| 192 |
+
instantiate_from_config(data_cfg)
|
| 193 |
+
|
| 194 |
+
def setup(self, stage=None):
|
| 195 |
+
self.datasets = dict(
|
| 196 |
+
(k, instantiate_from_config(self.dataset_configs[k]))
|
| 197 |
+
for k in self.dataset_configs)
|
| 198 |
+
if self.wrap:
|
| 199 |
+
for k in self.datasets:
|
| 200 |
+
self.datasets[k] = WrappedDataset(self.datasets[k])
|
| 201 |
+
|
| 202 |
+
def _train_dataloader(self):
|
| 203 |
+
is_iterable_dataset = isinstance(self.datasets['train'], Txt2ImgIterableBaseDataset)
|
| 204 |
+
if is_iterable_dataset or self.use_worker_init_fn:
|
| 205 |
+
init_fn = worker_init_fn
|
| 206 |
+
else:
|
| 207 |
+
init_fn = None
|
| 208 |
+
return DataLoader(self.datasets["train"], batch_size=self.batch_size,
|
| 209 |
+
num_workers=self.num_workers, shuffle=False if is_iterable_dataset else True,
|
| 210 |
+
worker_init_fn=init_fn)
|
| 211 |
+
|
| 212 |
+
def _val_dataloader(self, shuffle=False):
|
| 213 |
+
if isinstance(self.datasets['validation'], Txt2ImgIterableBaseDataset) or self.use_worker_init_fn:
|
| 214 |
+
init_fn = worker_init_fn
|
| 215 |
+
else:
|
| 216 |
+
init_fn = None
|
| 217 |
+
return DataLoader(self.datasets["validation"],
|
| 218 |
+
batch_size=self.batch_size,
|
| 219 |
+
num_workers=self.num_workers,
|
| 220 |
+
worker_init_fn=init_fn,
|
| 221 |
+
shuffle=shuffle)
|
| 222 |
+
|
| 223 |
+
def _test_dataloader(self, shuffle=False):
|
| 224 |
+
is_iterable_dataset = isinstance(self.datasets['train'], Txt2ImgIterableBaseDataset)
|
| 225 |
+
if is_iterable_dataset or self.use_worker_init_fn:
|
| 226 |
+
init_fn = worker_init_fn
|
| 227 |
+
else:
|
| 228 |
+
init_fn = None
|
| 229 |
+
|
| 230 |
+
# do not shuffle dataloader for iterable dataset
|
| 231 |
+
shuffle = shuffle and (not is_iterable_dataset)
|
| 232 |
+
|
| 233 |
+
return DataLoader(self.datasets["test"], batch_size=self.batch_size,
|
| 234 |
+
num_workers=self.num_workers, worker_init_fn=init_fn, shuffle=shuffle)
|
| 235 |
+
|
| 236 |
+
def _predict_dataloader(self, shuffle=False):
|
| 237 |
+
if isinstance(self.datasets['predict'], Txt2ImgIterableBaseDataset) or self.use_worker_init_fn:
|
| 238 |
+
init_fn = worker_init_fn
|
| 239 |
+
else:
|
| 240 |
+
init_fn = None
|
| 241 |
+
return DataLoader(self.datasets["predict"], batch_size=self.batch_size,
|
| 242 |
+
num_workers=self.num_workers, worker_init_fn=init_fn)
|
| 243 |
+
|
| 244 |
+
|
| 245 |
+
class SetupCallback(Callback):
|
| 246 |
+
def __init__(self, resume, now, logdir, ckptdir, cfgdir, config, lightning_config):
|
| 247 |
+
super().__init__()
|
| 248 |
+
self.resume = resume
|
| 249 |
+
self.now = now
|
| 250 |
+
self.logdir = logdir
|
| 251 |
+
self.ckptdir = ckptdir
|
| 252 |
+
self.cfgdir = cfgdir
|
| 253 |
+
self.config = config
|
| 254 |
+
self.lightning_config = lightning_config
|
| 255 |
+
|
| 256 |
+
def on_keyboard_interrupt(self, trainer, pl_module):
|
| 257 |
+
if trainer.global_rank == 0:
|
| 258 |
+
print("Summoning checkpoint.")
|
| 259 |
+
ckpt_path = os.path.join(self.ckptdir, "last.ckpt")
|
| 260 |
+
trainer.save_checkpoint(ckpt_path)
|
| 261 |
+
|
| 262 |
+
def on_pretrain_routine_start(self, trainer, pl_module):
|
| 263 |
+
if trainer.global_rank == 0:
|
| 264 |
+
# Create logdirs and save configs
|
| 265 |
+
os.makedirs(self.logdir, exist_ok=True)
|
| 266 |
+
os.makedirs(self.ckptdir, exist_ok=True)
|
| 267 |
+
os.makedirs(self.cfgdir, exist_ok=True)
|
| 268 |
+
|
| 269 |
+
if "callbacks" in self.lightning_config:
|
| 270 |
+
if 'metrics_over_trainsteps_checkpoint' in self.lightning_config['callbacks']:
|
| 271 |
+
os.makedirs(os.path.join(self.ckptdir, 'trainstep_checkpoints'), exist_ok=True)
|
| 272 |
+
print("Project config")
|
| 273 |
+
# print(OmegaConf.to_yaml(self.config))
|
| 274 |
+
print(self.config.pretty())
|
| 275 |
+
OmegaConf.save(self.config,
|
| 276 |
+
os.path.join(self.cfgdir, "{}-project.yaml".format(self.now)))
|
| 277 |
+
|
| 278 |
+
print("Lightning config")
|
| 279 |
+
# print(OmegaConf.to_yaml(self.lightning_config))
|
| 280 |
+
print(self.lightning_config.pretty())
|
| 281 |
+
OmegaConf.save(OmegaConf.create({"lightning": self.lightning_config}),
|
| 282 |
+
os.path.join(self.cfgdir, "{}-lightning.yaml".format(self.now)))
|
| 283 |
+
|
| 284 |
+
else:
|
| 285 |
+
# ModelCheckpoint callback created log directory --- remove it
|
| 286 |
+
if not self.resume and os.path.exists(self.logdir):
|
| 287 |
+
dst, name = os.path.split(self.logdir)
|
| 288 |
+
dst = os.path.join(dst, "child_runs", name)
|
| 289 |
+
os.makedirs(os.path.split(dst)[0], exist_ok=True)
|
| 290 |
+
try:
|
| 291 |
+
os.rename(self.logdir, dst)
|
| 292 |
+
except FileNotFoundError:
|
| 293 |
+
pass
|
| 294 |
+
|
| 295 |
+
|
| 296 |
+
class ImageLogger(Callback):
|
| 297 |
+
def __init__(self, batch_frequency, max_images, clamp=True, increase_log_steps=True,
|
| 298 |
+
rescale=True, disabled=False, log_on_batch_idx=False, log_first_step=False,
|
| 299 |
+
log_images_kwargs=None):
|
| 300 |
+
super().__init__()
|
| 301 |
+
self.rescale = rescale
|
| 302 |
+
self.batch_freq = batch_frequency
|
| 303 |
+
self.max_images = max_images
|
| 304 |
+
self.logger_log_images = {
|
| 305 |
+
pl.loggers.TestTubeLogger: self._testtube,
|
| 306 |
+
}
|
| 307 |
+
self.log_steps = [2 ** n for n in range(int(np.log2(self.batch_freq)) + 1)]
|
| 308 |
+
if not increase_log_steps:
|
| 309 |
+
self.log_steps = [self.batch_freq]
|
| 310 |
+
self.clamp = clamp
|
| 311 |
+
self.disabled = disabled
|
| 312 |
+
self.log_on_batch_idx = log_on_batch_idx
|
| 313 |
+
self.log_images_kwargs = log_images_kwargs if log_images_kwargs else {}
|
| 314 |
+
self.log_first_step = log_first_step
|
| 315 |
+
|
| 316 |
+
@rank_zero_only
|
| 317 |
+
def _testtube(self, pl_module, images, batch_idx, split):
|
| 318 |
+
for k in images:
|
| 319 |
+
grid = torchvision.utils.make_grid(images[k])
|
| 320 |
+
grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w
|
| 321 |
+
|
| 322 |
+
tag = f"{split}/{k}"
|
| 323 |
+
pl_module.logger.experiment.add_image(
|
| 324 |
+
tag, grid,
|
| 325 |
+
global_step=pl_module.global_step)
|
| 326 |
+
|
| 327 |
+
@rank_zero_only
|
| 328 |
+
def log_local(self, save_dir, split, images,
|
| 329 |
+
global_step, current_epoch, batch_idx):
|
| 330 |
+
root = os.path.join(save_dir, "images", split)
|
| 331 |
+
for k in images:
|
| 332 |
+
grid = torchvision.utils.make_grid(images[k], nrow=4)
|
| 333 |
+
if self.rescale:
|
| 334 |
+
grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w
|
| 335 |
+
grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1)
|
| 336 |
+
grid = grid.numpy()
|
| 337 |
+
grid = (grid * 255).astype(np.uint8)
|
| 338 |
+
filename = "{}_gs-{:06}_e-{:06}_b-{:06}.png".format(
|
| 339 |
+
k,
|
| 340 |
+
global_step,
|
| 341 |
+
current_epoch,
|
| 342 |
+
batch_idx)
|
| 343 |
+
path = os.path.join(root, filename)
|
| 344 |
+
os.makedirs(os.path.split(path)[0], exist_ok=True)
|
| 345 |
+
Image.fromarray(grid).save(path)
|
| 346 |
+
|
| 347 |
+
def log_img(self, pl_module, batch, batch_idx, split="train"):
|
| 348 |
+
check_idx = batch_idx if self.log_on_batch_idx else pl_module.global_step
|
| 349 |
+
if (self.check_frequency(check_idx) and # batch_idx % self.batch_freq == 0
|
| 350 |
+
hasattr(pl_module, "log_images") and
|
| 351 |
+
callable(pl_module.log_images) and
|
| 352 |
+
self.max_images > 0):
|
| 353 |
+
logger = type(pl_module.logger)
|
| 354 |
+
|
| 355 |
+
is_train = pl_module.training
|
| 356 |
+
if is_train:
|
| 357 |
+
pl_module.eval()
|
| 358 |
+
|
| 359 |
+
with torch.no_grad():
|
| 360 |
+
images = pl_module.log_images(batch, split=split, **self.log_images_kwargs)
|
| 361 |
+
|
| 362 |
+
for k in images:
|
| 363 |
+
N = min(images[k].shape[0], self.max_images)
|
| 364 |
+
images[k] = images[k][:N]
|
| 365 |
+
if isinstance(images[k], torch.Tensor):
|
| 366 |
+
images[k] = images[k].detach().cpu()
|
| 367 |
+
if self.clamp:
|
| 368 |
+
images[k] = torch.clamp(images[k], -1., 1.)
|
| 369 |
+
|
| 370 |
+
self.log_local(pl_module.logger.save_dir, split, images,
|
| 371 |
+
pl_module.global_step, pl_module.current_epoch, batch_idx)
|
| 372 |
+
|
| 373 |
+
logger_log_images = self.logger_log_images.get(logger, lambda *args, **kwargs: None)
|
| 374 |
+
logger_log_images(pl_module, images, pl_module.global_step, split)
|
| 375 |
+
|
| 376 |
+
if is_train:
|
| 377 |
+
pl_module.train()
|
| 378 |
+
|
| 379 |
+
def check_frequency(self, check_idx):
|
| 380 |
+
if ((check_idx % self.batch_freq) == 0 or (check_idx in self.log_steps)) and (
|
| 381 |
+
check_idx > 0 or self.log_first_step):
|
| 382 |
+
try:
|
| 383 |
+
self.log_steps.pop(0)
|
| 384 |
+
except IndexError as e:
|
| 385 |
+
print(e)
|
| 386 |
+
pass
|
| 387 |
+
return True
|
| 388 |
+
return False
|
| 389 |
+
|
| 390 |
+
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
|
| 391 |
+
if not self.disabled and (pl_module.global_step > 0 or self.log_first_step):
|
| 392 |
+
self.log_img(pl_module, batch, batch_idx, split="train")
|
| 393 |
+
|
| 394 |
+
def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
|
| 395 |
+
if not self.disabled and pl_module.global_step > 0:
|
| 396 |
+
self.log_img(pl_module, batch, batch_idx, split="val")
|
| 397 |
+
if hasattr(pl_module, 'calibrate_grad_norm'):
|
| 398 |
+
if (pl_module.calibrate_grad_norm and batch_idx % 25 == 0) and batch_idx > 0:
|
| 399 |
+
self.log_gradients(trainer, pl_module, batch_idx=batch_idx)
|
| 400 |
+
|
| 401 |
+
|
| 402 |
+
class CUDACallback(Callback):
|
| 403 |
+
# see https://github.com/SeanNaren/minGPT/blob/master/mingpt/callback.py
|
| 404 |
+
def on_train_epoch_start(self, trainer, pl_module):
|
| 405 |
+
# Reset the memory use counter
|
| 406 |
+
torch.cuda.reset_peak_memory_stats(trainer.root_gpu)
|
| 407 |
+
torch.cuda.synchronize(trainer.root_gpu)
|
| 408 |
+
self.start_time = time.time()
|
| 409 |
+
|
| 410 |
+
def on_train_epoch_end(self, trainer, pl_module, outputs):
|
| 411 |
+
torch.cuda.synchronize(trainer.root_gpu)
|
| 412 |
+
max_memory = torch.cuda.max_memory_allocated(trainer.root_gpu) / 2 ** 20
|
| 413 |
+
epoch_time = time.time() - self.start_time
|
| 414 |
+
|
| 415 |
+
try:
|
| 416 |
+
max_memory = trainer.training_type_plugin.reduce(max_memory)
|
| 417 |
+
epoch_time = trainer.training_type_plugin.reduce(epoch_time)
|
| 418 |
+
|
| 419 |
+
rank_zero_info(f"Average Epoch time: {epoch_time:.2f} seconds")
|
| 420 |
+
rank_zero_info(f"Average Peak memory {max_memory:.2f}MiB")
|
| 421 |
+
except AttributeError:
|
| 422 |
+
pass
|
| 423 |
+
|
| 424 |
+
|
| 425 |
+
if __name__ == "__main__":
|
| 426 |
+
# custom parser to specify config files, train, test and debug mode,
|
| 427 |
+
# postfix, resume.
|
| 428 |
+
# `--key value` arguments are interpreted as arguments to the trainer.
|
| 429 |
+
# `nested.key=value` arguments are interpreted as config parameters.
|
| 430 |
+
# configs are merged from left-to-right followed by command line parameters.
|
| 431 |
+
|
| 432 |
+
# model:
|
| 433 |
+
# base_learning_rate: float
|
| 434 |
+
# target: path to lightning module
|
| 435 |
+
# params:
|
| 436 |
+
# key: value
|
| 437 |
+
# data:
|
| 438 |
+
# target: main.DataModuleFromConfig
|
| 439 |
+
# params:
|
| 440 |
+
# batch_size: int
|
| 441 |
+
# wrap: bool
|
| 442 |
+
# train:
|
| 443 |
+
# target: path to train dataset
|
| 444 |
+
# params:
|
| 445 |
+
# key: value
|
| 446 |
+
# validation:
|
| 447 |
+
# target: path to validation dataset
|
| 448 |
+
# params:
|
| 449 |
+
# key: value
|
| 450 |
+
# test:
|
| 451 |
+
# target: path to test dataset
|
| 452 |
+
# params:
|
| 453 |
+
# key: value
|
| 454 |
+
# lightning: (optional, has sane defaults and can be specified on cmdline)
|
| 455 |
+
# trainer:
|
| 456 |
+
# additional arguments to trainer
|
| 457 |
+
# logger:
|
| 458 |
+
# logger to instantiate
|
| 459 |
+
# modelcheckpoint:
|
| 460 |
+
# modelcheckpoint to instantiate
|
| 461 |
+
# callbacks:
|
| 462 |
+
# callback1:
|
| 463 |
+
# target: importpath
|
| 464 |
+
# params:
|
| 465 |
+
# key: value
|
| 466 |
+
|
| 467 |
+
now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
|
| 468 |
+
|
| 469 |
+
# add cwd for convenience and to make classes in this file available when
|
| 470 |
+
# running as `python main.py`
|
| 471 |
+
# (in particular `main.DataModuleFromConfig`)
|
| 472 |
+
sys.path.append(os.getcwd())
|
| 473 |
+
|
| 474 |
+
parser = get_parser()
|
| 475 |
+
parser = Trainer.add_argparse_args(parser)
|
| 476 |
+
|
| 477 |
+
opt, unknown = parser.parse_known_args()
|
| 478 |
+
if opt.name and opt.resume:
|
| 479 |
+
raise ValueError(
|
| 480 |
+
"-n/--name and -r/--resume cannot be specified both."
|
| 481 |
+
"If you want to resume training in a new log folder, "
|
| 482 |
+
"use -n/--name in combination with --resume_from_checkpoint"
|
| 483 |
+
)
|
| 484 |
+
if opt.resume:
|
| 485 |
+
if not os.path.exists(opt.resume):
|
| 486 |
+
raise ValueError("Cannot find {}".format(opt.resume))
|
| 487 |
+
if os.path.isfile(opt.resume):
|
| 488 |
+
paths = opt.resume.split("/")
|
| 489 |
+
# idx = len(paths)-paths[::-1].index("logs")+1
|
| 490 |
+
# logdir = "/".join(paths[:idx])
|
| 491 |
+
logdir = "/".join(paths[:-2])
|
| 492 |
+
ckpt = opt.resume
|
| 493 |
+
else:
|
| 494 |
+
assert os.path.isdir(opt.resume), opt.resume
|
| 495 |
+
logdir = opt.resume.rstrip("/")
|
| 496 |
+
ckpt = os.path.join(logdir, "checkpoints", "last.ckpt")
|
| 497 |
+
|
| 498 |
+
opt.resume_from_checkpoint = ckpt
|
| 499 |
+
base_configs = sorted(glob.glob(os.path.join(logdir, "configs/*.yaml")))
|
| 500 |
+
opt.base = base_configs + opt.base
|
| 501 |
+
_tmp = logdir.split("/")
|
| 502 |
+
nowname = _tmp[-1]
|
| 503 |
+
else:
|
| 504 |
+
if opt.name:
|
| 505 |
+
name = "_" + opt.name
|
| 506 |
+
elif opt.base:
|
| 507 |
+
cfg_fname = os.path.split(opt.base[0])[-1]
|
| 508 |
+
cfg_name = os.path.splitext(cfg_fname)[0]
|
| 509 |
+
name = "_" + cfg_name
|
| 510 |
+
else:
|
| 511 |
+
name = ""
|
| 512 |
+
nowname = now + name + opt.postfix
|
| 513 |
+
logdir = os.path.join(opt.logdir, nowname)
|
| 514 |
+
|
| 515 |
+
ckptdir = os.path.join(logdir, "checkpoints")
|
| 516 |
+
cfgdir = os.path.join(logdir, "configs")
|
| 517 |
+
seed_everything(opt.seed)
|
| 518 |
+
|
| 519 |
+
try:
|
| 520 |
+
# init and save configs
|
| 521 |
+
configs = [OmegaConf.load(cfg) for cfg in opt.base]
|
| 522 |
+
cli = OmegaConf.from_dotlist(unknown)
|
| 523 |
+
config = OmegaConf.merge(*configs, cli)
|
| 524 |
+
lightning_config = config.pop("lightning", OmegaConf.create())
|
| 525 |
+
# merge trainer cli with config
|
| 526 |
+
trainer_config = lightning_config.get("trainer", OmegaConf.create())
|
| 527 |
+
# default to ddp
|
| 528 |
+
trainer_config["accelerator"] = "ddp"
|
| 529 |
+
for k in nondefault_trainer_args(opt):
|
| 530 |
+
trainer_config[k] = getattr(opt, k)
|
| 531 |
+
if not "gpus" in trainer_config:
|
| 532 |
+
del trainer_config["accelerator"]
|
| 533 |
+
cpu = True
|
| 534 |
+
else:
|
| 535 |
+
gpuinfo = trainer_config["gpus"]
|
| 536 |
+
print(f"Running on GPUs {gpuinfo}")
|
| 537 |
+
cpu = False
|
| 538 |
+
trainer_opt = argparse.Namespace(**trainer_config)
|
| 539 |
+
lightning_config.trainer = trainer_config
|
| 540 |
+
|
| 541 |
+
# model
|
| 542 |
+
model = instantiate_from_config(config.model)
|
| 543 |
+
|
| 544 |
+
# trainer and callbacks
|
| 545 |
+
trainer_kwargs = dict()
|
| 546 |
+
|
| 547 |
+
# default logger configs
|
| 548 |
+
# NOTE wandb < 0.10.0 interferes with shutdown
|
| 549 |
+
# wandb >= 0.10.0 seems to fix it but still interferes with pudb
|
| 550 |
+
# debugging (wrongly sized pudb ui)
|
| 551 |
+
# thus prefer testtube for now
|
| 552 |
+
default_logger_cfgs = {
|
| 553 |
+
"wandb": {
|
| 554 |
+
"target": "pytorch_lightning.loggers.WandbLogger",
|
| 555 |
+
"params": {
|
| 556 |
+
"name": nowname,
|
| 557 |
+
"save_dir": logdir,
|
| 558 |
+
"offline": opt.debug,
|
| 559 |
+
"id": nowname,
|
| 560 |
+
"project": config.model.project
|
| 561 |
+
}
|
| 562 |
+
},
|
| 563 |
+
"testtube": {
|
| 564 |
+
"target": "pytorch_lightning.loggers.TestTubeLogger",
|
| 565 |
+
"params": {
|
| 566 |
+
"name": "testtube",
|
| 567 |
+
"save_dir": logdir,
|
| 568 |
+
}
|
| 569 |
+
},
|
| 570 |
+
}
|
| 571 |
+
|
| 572 |
+
default_logger_cfg = default_logger_cfgs["wandb"] # "testtube" "wandb"
|
| 573 |
+
logger_cfg = lightning_config.logger or OmegaConf.create()
|
| 574 |
+
logger_cfg = OmegaConf.merge(default_logger_cfg, logger_cfg)
|
| 575 |
+
trainer_kwargs["logger"] = instantiate_from_config(logger_cfg)
|
| 576 |
+
|
| 577 |
+
# Wandb configs
|
| 578 |
+
if rank_zero_only.rank == 0:
|
| 579 |
+
trainer_kwargs["logger"].experiment.config["lr"]=config.model.base_learning_rate
|
| 580 |
+
trainer_kwargs["logger"].experiment.config["batch_size"]=config.data.params.batch_size
|
| 581 |
+
trainer_kwargs["logger"].watch(model, log_freq=100)
|
| 582 |
+
|
| 583 |
+
# # default_logger_cfg = default_logger_cfgs["testtube"]
|
| 584 |
+
# if "logger" in lightning_config:
|
| 585 |
+
# logger_cfg = lightning_config.logger
|
| 586 |
+
# else:
|
| 587 |
+
# logger_cfg = OmegaConf.create()
|
| 588 |
+
# logger_cfg = OmegaConf.merge(default_logger_cfg, logger_cfg)
|
| 589 |
+
# trainer_kwargs["logger"] = instantiate_from_config(logger_cfg)
|
| 590 |
+
|
| 591 |
+
# modelcheckpoint - use TrainResult/EvalResult(checkpoint_on=metric) to
|
| 592 |
+
# specify which metric is used to determine best models
|
| 593 |
+
default_modelckpt_cfg = {
|
| 594 |
+
"target": "pytorch_lightning.callbacks.ModelCheckpoint",
|
| 595 |
+
"params": {
|
| 596 |
+
"dirpath": ckptdir,
|
| 597 |
+
"filename": "{epoch:06}",
|
| 598 |
+
"verbose": True,
|
| 599 |
+
"monitor": get_monitor(config.model.target),
|
| 600 |
+
"save_top_k": 1,
|
| 601 |
+
"mode": "min",
|
| 602 |
+
"period": 3,
|
| 603 |
+
"save_last": True,
|
| 604 |
+
}
|
| 605 |
+
}
|
| 606 |
+
if hasattr(model, "monitor"):
|
| 607 |
+
print(f"Monitoring {model.monitor} as checkpoint metric.")
|
| 608 |
+
default_modelckpt_cfg["params"]["monitor"] = model.monitor
|
| 609 |
+
default_modelckpt_cfg["params"]["save_top_k"] = 5
|
| 610 |
+
|
| 611 |
+
if "modelcheckpoint" in lightning_config:
|
| 612 |
+
modelckpt_cfg = lightning_config.modelcheckpoint
|
| 613 |
+
else:
|
| 614 |
+
modelckpt_cfg = OmegaConf.create()
|
| 615 |
+
modelckpt_cfg = OmegaConf.merge(default_modelckpt_cfg, modelckpt_cfg)
|
| 616 |
+
print(f"Merged modelckpt-cfg: \n{modelckpt_cfg}")
|
| 617 |
+
if version.parse(pl.__version__) < version.parse('1.4.0'):
|
| 618 |
+
trainer_kwargs["checkpoint_callback"] = instantiate_from_config(modelckpt_cfg)
|
| 619 |
+
|
| 620 |
+
# add callback which sets up log directory
|
| 621 |
+
default_callbacks_cfg = {
|
| 622 |
+
"setup_callback": {
|
| 623 |
+
"target": "main.SetupCallback",
|
| 624 |
+
"params": {
|
| 625 |
+
"resume": opt.resume,
|
| 626 |
+
"now": now,
|
| 627 |
+
"logdir": logdir,
|
| 628 |
+
"ckptdir": ckptdir,
|
| 629 |
+
"cfgdir": cfgdir,
|
| 630 |
+
"config": config,
|
| 631 |
+
"lightning_config": lightning_config,
|
| 632 |
+
}
|
| 633 |
+
},
|
| 634 |
+
"image_logger": {
|
| 635 |
+
"target": "main.ImageLogger",
|
| 636 |
+
"params": {
|
| 637 |
+
"batch_frequency": 750,
|
| 638 |
+
"max_images": 4,
|
| 639 |
+
"clamp": True
|
| 640 |
+
}
|
| 641 |
+
},
|
| 642 |
+
"learning_rate_logger": {
|
| 643 |
+
"target": "main.LearningRateMonitor",
|
| 644 |
+
"params": {
|
| 645 |
+
"logging_interval": "step",
|
| 646 |
+
# "log_momentum": True
|
| 647 |
+
}
|
| 648 |
+
},
|
| 649 |
+
"cuda_callback": {
|
| 650 |
+
"target": "main.CUDACallback"
|
| 651 |
+
},
|
| 652 |
+
}
|
| 653 |
+
if version.parse(pl.__version__) >= version.parse('1.4.0'):
|
| 654 |
+
default_callbacks_cfg.update({'checkpoint_callback': modelckpt_cfg})
|
| 655 |
+
|
| 656 |
+
if "callbacks" in lightning_config:
|
| 657 |
+
callbacks_cfg = lightning_config.callbacks
|
| 658 |
+
else:
|
| 659 |
+
callbacks_cfg = OmegaConf.create()
|
| 660 |
+
|
| 661 |
+
if 'metrics_over_trainsteps_checkpoint' in callbacks_cfg:
|
| 662 |
+
print(
|
| 663 |
+
'Caution: Saving checkpoints every n train steps without deleting. This might require some free space.')
|
| 664 |
+
default_metrics_over_trainsteps_ckpt_dict = {
|
| 665 |
+
'metrics_over_trainsteps_checkpoint':
|
| 666 |
+
{"target": 'pytorch_lightning.callbacks.ModelCheckpoint',
|
| 667 |
+
'params': {
|
| 668 |
+
"dirpath": os.path.join(ckptdir, 'trainstep_checkpoints'),
|
| 669 |
+
"filename": "{epoch:06}-{step:09}",
|
| 670 |
+
"verbose": True,
|
| 671 |
+
'save_top_k': -1,
|
| 672 |
+
'every_n_train_steps': 10000,
|
| 673 |
+
'save_weights_only': True
|
| 674 |
+
}
|
| 675 |
+
}
|
| 676 |
+
}
|
| 677 |
+
default_callbacks_cfg.update(default_metrics_over_trainsteps_ckpt_dict)
|
| 678 |
+
|
| 679 |
+
callbacks_cfg = OmegaConf.merge(default_callbacks_cfg, callbacks_cfg)
|
| 680 |
+
if 'ignore_keys_callback' in callbacks_cfg and hasattr(trainer_opt, 'resume_from_checkpoint'):
|
| 681 |
+
callbacks_cfg.ignore_keys_callback.params['ckpt_path'] = trainer_opt.resume_from_checkpoint
|
| 682 |
+
elif 'ignore_keys_callback' in callbacks_cfg:
|
| 683 |
+
del callbacks_cfg['ignore_keys_callback']
|
| 684 |
+
|
| 685 |
+
trainer_kwargs["callbacks"] = [instantiate_from_config(callbacks_cfg[k]) for k in callbacks_cfg]
|
| 686 |
+
|
| 687 |
+
trainer = Trainer.from_argparse_args(trainer_opt, **trainer_kwargs)
|
| 688 |
+
trainer.logdir = logdir ###
|
| 689 |
+
|
| 690 |
+
# data
|
| 691 |
+
data = instantiate_from_config(config.data)
|
| 692 |
+
# NOTE according to https://pytorch-lightning.readthedocs.io/en/latest/datamodules.html
|
| 693 |
+
# calling these ourselves should not be necessary but it is.
|
| 694 |
+
# lightning still takes care of proper multiprocessing though
|
| 695 |
+
data.prepare_data()
|
| 696 |
+
data.setup()
|
| 697 |
+
print("#### Data #####")
|
| 698 |
+
for k in data.datasets:
|
| 699 |
+
print(f"{k}, {data.datasets[k].__class__.__name__}, {len(data.datasets[k])}")
|
| 700 |
+
|
| 701 |
+
# configure learning rate
|
| 702 |
+
bs, base_lr = config.data.params.batch_size, config.model.base_learning_rate
|
| 703 |
+
if not cpu:
|
| 704 |
+
ngpu = len(lightning_config.trainer.gpus.strip(",").split(','))
|
| 705 |
+
else:
|
| 706 |
+
ngpu = 1
|
| 707 |
+
if 'accumulate_grad_batches' in lightning_config.trainer:
|
| 708 |
+
accumulate_grad_batches = lightning_config.trainer.accumulate_grad_batches
|
| 709 |
+
else:
|
| 710 |
+
accumulate_grad_batches = 1
|
| 711 |
+
print(f"accumulate_grad_batches = {accumulate_grad_batches}")
|
| 712 |
+
lightning_config.trainer.accumulate_grad_batches = accumulate_grad_batches
|
| 713 |
+
if opt.scale_lr:
|
| 714 |
+
model.learning_rate = accumulate_grad_batches * ngpu * bs * base_lr
|
| 715 |
+
print(
|
| 716 |
+
"Setting learning rate to {:.2e} = {} (accumulate_grad_batches) * {} (num_gpus) * {} (batchsize) * {:.2e} (base_lr)".format(
|
| 717 |
+
model.learning_rate, accumulate_grad_batches, ngpu, bs, base_lr))
|
| 718 |
+
else:
|
| 719 |
+
model.learning_rate = base_lr
|
| 720 |
+
print("++++ NOT USING LR SCALING ++++")
|
| 721 |
+
print(f"Setting learning rate to {model.learning_rate:.2e}")
|
| 722 |
+
|
| 723 |
+
|
| 724 |
+
# allow checkpointing via USR1
|
| 725 |
+
def melk(*args, **kwargs):
|
| 726 |
+
# run all checkpoint hooks
|
| 727 |
+
if trainer.global_rank == 0:
|
| 728 |
+
print("Summoning checkpoint.")
|
| 729 |
+
ckpt_path = os.path.join(ckptdir, "last.ckpt")
|
| 730 |
+
trainer.save_checkpoint(ckpt_path)
|
| 731 |
+
|
| 732 |
+
|
| 733 |
+
def divein(*args, **kwargs):
|
| 734 |
+
if trainer.global_rank == 0:
|
| 735 |
+
import pudb;
|
| 736 |
+
pudb.set_trace()
|
| 737 |
+
|
| 738 |
+
|
| 739 |
+
import signal
|
| 740 |
+
|
| 741 |
+
signal.signal(signal.SIGUSR1, melk)
|
| 742 |
+
signal.signal(signal.SIGUSR2, divein)
|
| 743 |
+
|
| 744 |
+
# run
|
| 745 |
+
if opt.train:
|
| 746 |
+
try:
|
| 747 |
+
trainer.fit(model, data)
|
| 748 |
+
except Exception:
|
| 749 |
+
melk()
|
| 750 |
+
raise
|
| 751 |
+
if not opt.no_test and not trainer.interrupted:
|
| 752 |
+
trainer.test(model, data)
|
| 753 |
+
except Exception:
|
| 754 |
+
if opt.debug and trainer.global_rank == 0:
|
| 755 |
+
try:
|
| 756 |
+
import pudb as debugger
|
| 757 |
+
except ImportError:
|
| 758 |
+
import pdb as debugger
|
| 759 |
+
debugger.post_mortem()
|
| 760 |
+
raise
|
| 761 |
+
finally:
|
| 762 |
+
# move newly created debug project to debug_runs
|
| 763 |
+
if opt.debug and not opt.resume and trainer.global_rank == 0:
|
| 764 |
+
dst, name = os.path.split(logdir)
|
| 765 |
+
dst = os.path.join(dst, "debug_runs", name)
|
| 766 |
+
os.makedirs(os.path.split(dst)[0], exist_ok=True)
|
| 767 |
+
os.rename(logdir, dst)
|
| 768 |
+
if trainer.global_rank == 0:
|
| 769 |
+
print(trainer.profiler.summary())
|