Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,114 +1,334 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
import torch
|
| 7 |
-
import
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
}
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
# Process the uploaded image
|
| 55 |
-
image_pil = Image.open(image)
|
| 56 |
-
image_tensor = selected_processor(image_pil, return_tensors="pt")['pixel_values'].cuda()
|
| 57 |
-
|
| 58 |
-
if not image_tensor.shape[0] == 1:
|
| 59 |
-
image_tensor = image_tensor.squeeze(0)
|
| 60 |
-
|
| 61 |
-
batch = {"image": image_tensor}
|
| 62 |
-
|
| 63 |
-
# Generate SVG
|
| 64 |
-
raw_svg = selected_model.generate_im2svg(batch, max_length=4000)[0]
|
| 65 |
-
svg, raster_image = process_and_rasterize_svg(raw_svg)
|
| 66 |
-
|
| 67 |
-
# Convert SVG string to bytes for download
|
| 68 |
-
svg_bytes = io.BytesIO(svg.encode('utf-8'))
|
| 69 |
-
|
| 70 |
-
return raster_image, svg_bytes, f"Conversion successful using {model_choice} model!"
|
| 71 |
-
except Exception as e:
|
| 72 |
-
return None, None, f"Error: {str(e)}"
|
| 73 |
-
|
| 74 |
-
# Create Blocks interface
|
| 75 |
-
with gr.Blocks(title="StarVector") as demo:
|
| 76 |
-
gr.Markdown("# StarVector")
|
| 77 |
-
gr.Markdown("Upload an image to convert it to SVG format using StarVector model")
|
| 78 |
-
|
| 79 |
-
with gr.Row():
|
| 80 |
-
with gr.Column(scale=1):
|
| 81 |
-
# Input section
|
| 82 |
-
input_image = gr.Image(type="filepath", label="Upload Image")
|
| 83 |
-
if USE_BOTH_MODELS:
|
| 84 |
-
model_choice = gr.Radio(
|
| 85 |
-
choices=["8b", "1b"],
|
| 86 |
-
value="8b",
|
| 87 |
-
label="Select Model",
|
| 88 |
-
info="Choose between 8b (larger) and 1b (smaller) models"
|
| 89 |
-
)
|
| 90 |
-
convert_btn = gr.Button("Convert to SVG")
|
| 91 |
-
example = gr.Examples(
|
| 92 |
-
examples=[["assets/examples/sample-18.png"]],
|
| 93 |
-
inputs=input_image
|
| 94 |
-
)
|
| 95 |
-
|
| 96 |
-
with gr.Column(scale=1):
|
| 97 |
-
# Output section
|
| 98 |
-
output_preview = gr.Image(type="pil", label="Rasterized SVG Preview")
|
| 99 |
-
output_file = gr.File(label="Download SVG")
|
| 100 |
-
status = gr.Textbox(label="Status")
|
| 101 |
-
|
| 102 |
-
# Connect button click to conversion function
|
| 103 |
-
inputs = [input_image]
|
| 104 |
-
if USE_BOTH_MODELS:
|
| 105 |
-
inputs.append(model_choice)
|
| 106 |
-
|
| 107 |
-
convert_btn.click(
|
| 108 |
-
fn=convert_to_svg,
|
| 109 |
-
inputs=inputs,
|
| 110 |
-
outputs=[output_preview, output_file, status]
|
| 111 |
)
|
| 112 |
|
| 113 |
-
#
|
| 114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
gradio_tts_app.py
|
| 4 |
+
|
| 5 |
+
Run:
|
| 6 |
+
python gradio_tts_app.py
|
| 7 |
+
|
| 8 |
+
Then open the printed local or public URL in your browser.
|
| 9 |
+
"""
|
| 10 |
+
|
| 11 |
+
import os
|
| 12 |
+
import random
|
| 13 |
+
import numpy as np
|
| 14 |
import torch
|
| 15 |
+
import torchaudio
|
| 16 |
+
import whisper
|
| 17 |
+
import gradio as gr
|
| 18 |
+
from argparse import Namespace
|
| 19 |
+
|
| 20 |
+
# ---------------------------------------------------------------------
|
| 21 |
+
# The following imports assume your local project structure:
|
| 22 |
+
# data/tokenizer.py
|
| 23 |
+
# models/voice_star.py
|
| 24 |
+
# inference_tts_utils.py
|
| 25 |
+
# Adjust if needed.
|
| 26 |
+
# ---------------------------------------------------------------------
|
| 27 |
+
from data.tokenizer import AudioTokenizer, TextTokenizer
|
| 28 |
+
from models import voice_star
|
| 29 |
+
from inference_tts_utils import inference_one_sample
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
############################################################
|
| 33 |
+
# Utility Functions
|
| 34 |
+
############################################################
|
| 35 |
+
|
| 36 |
+
def seed_everything(seed=1):
|
| 37 |
+
os.environ['PYTHONHASHSEED'] = str(seed)
|
| 38 |
+
random.seed(seed)
|
| 39 |
+
np.random.seed(seed)
|
| 40 |
+
torch.manual_seed(seed)
|
| 41 |
+
torch.cuda.manual_seed(seed)
|
| 42 |
+
torch.backends.cudnn.benchmark = False
|
| 43 |
+
torch.backends.cudnn.deterministic = True
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def estimate_duration(ref_audio_path, text):
|
| 47 |
+
"""
|
| 48 |
+
Estimate duration based on seconds per character from the reference audio.
|
| 49 |
+
"""
|
| 50 |
+
info = torchaudio.info(ref_audio_path)
|
| 51 |
+
audio_duration = info.num_frames / info.sample_rate
|
| 52 |
+
length_text = max(len(text), 1)
|
| 53 |
+
spc = audio_duration / length_text # seconds per character
|
| 54 |
+
return len(text) * spc
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
############################################################
|
| 58 |
+
# Main Inference Function
|
| 59 |
+
############################################################
|
| 60 |
+
|
| 61 |
+
def run_inference(
|
| 62 |
+
# User-adjustable parameters (no "# do not change" in snippet)
|
| 63 |
+
reference_speech="./demo/5895_34622_000026_000002.wav",
|
| 64 |
+
target_text="VoiceStar is a very interesting model, it's duration controllable and can extrapolate",
|
| 65 |
+
model_name="VoiceStar_840M_40s",
|
| 66 |
+
model_root="./pretrained",
|
| 67 |
+
reference_text=None, # optional
|
| 68 |
+
target_duration=None, # optional
|
| 69 |
+
top_k=10, # can try 10, 20, 30, 40
|
| 70 |
+
temperature=1,
|
| 71 |
+
kvcache=1, # if OOM, set to 0
|
| 72 |
+
repeat_prompt=1, # use higher to improve speaker similarity
|
| 73 |
+
stop_repetition=3, # snippet says "will not use it" but not "do not change"
|
| 74 |
+
seed=1,
|
| 75 |
+
output_dir="./generated_tts",
|
| 76 |
+
|
| 77 |
+
# Non-adjustable parameters (based on snippet instructions)
|
| 78 |
+
codec_audio_sr=16000, # do not change
|
| 79 |
+
codec_sr=50, # do not change
|
| 80 |
+
top_p=1, # do not change
|
| 81 |
+
min_p=1, # do not change
|
| 82 |
+
silence_tokens=None, # do not change it
|
| 83 |
+
multi_trial=None, # do not change it
|
| 84 |
+
sample_batch_size=1, # do not change
|
| 85 |
+
cut_off_sec=100, # do not adjust
|
| 86 |
+
):
|
| 87 |
+
"""
|
| 88 |
+
Inference script for VoiceStar TTS.
|
| 89 |
+
"""
|
| 90 |
+
# 1. Set seed
|
| 91 |
+
seed_everything(seed)
|
| 92 |
+
|
| 93 |
+
# 2. Load model checkpoint
|
| 94 |
+
torch.serialization.add_safe_globals([Namespace])
|
| 95 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 96 |
+
ckpt_fn = os.path.join(model_root, model_name + ".pth")
|
| 97 |
+
if not os.path.exists(ckpt_fn):
|
| 98 |
+
# use wget to download
|
| 99 |
+
print(f"[Info] Downloading {model_name} checkpoint...")
|
| 100 |
+
os.system(f"wget https://huggingface.co/pyp1/VoiceStar/resolve/main/{model_name}.pth?download=true -O {ckpt_fn}")
|
| 101 |
+
bundle = torch.load(ckpt_fn, map_location=device, weights_only=True)
|
| 102 |
+
args = bundle["args"]
|
| 103 |
+
phn2num = bundle["phn2num"]
|
| 104 |
+
|
| 105 |
+
model = voice_star.VoiceStar(args)
|
| 106 |
+
model.load_state_dict(bundle["model"])
|
| 107 |
+
model.to(device)
|
| 108 |
+
model.eval()
|
| 109 |
+
|
| 110 |
+
# 3. If reference_text not provided, transcribe reference speech with Whisper
|
| 111 |
+
if reference_text is None:
|
| 112 |
+
print("[Info] No reference_text provided. Transcribing reference_speech with Whisper (large-v3-turbo).")
|
| 113 |
+
wh_model = whisper.load_model("large-v3-turbo")
|
| 114 |
+
result = wh_model.transcribe(reference_speech)
|
| 115 |
+
prefix_transcript = result["text"]
|
| 116 |
+
print(f"[Info] Whisper transcribed text: {prefix_transcript}")
|
| 117 |
+
else:
|
| 118 |
+
prefix_transcript = reference_text
|
| 119 |
+
|
| 120 |
+
# 4. If target_duration not provided, estimate from reference speech + target_text
|
| 121 |
+
if target_duration is None:
|
| 122 |
+
target_generation_length = estimate_duration(reference_speech, target_text)
|
| 123 |
+
print(f"[Info] target_duration not provided, estimated as {target_generation_length:.2f}s. Provide --target_duration if needed.")
|
| 124 |
+
else:
|
| 125 |
+
target_generation_length = float(target_duration)
|
| 126 |
+
|
| 127 |
+
# 5. Prepare signature from snippet
|
| 128 |
+
if args.n_codebooks == 4:
|
| 129 |
+
signature = "./pretrained/encodec_6f79c6a8.th"
|
| 130 |
+
elif args.n_codebooks == 8:
|
| 131 |
+
signature = "./pretrained/encodec_8cb1024_giga.th"
|
| 132 |
+
else:
|
| 133 |
+
signature = "./pretrained/encodec_6f79c6a8.th"
|
| 134 |
+
|
| 135 |
+
if silence_tokens is None:
|
| 136 |
+
silence_tokens = []
|
| 137 |
+
|
| 138 |
+
if multi_trial is None:
|
| 139 |
+
multi_trial = []
|
| 140 |
+
|
| 141 |
+
delay_pattern_increment = args.n_codebooks + 1 # from snippet
|
| 142 |
+
|
| 143 |
+
info = torchaudio.info(reference_speech)
|
| 144 |
+
prompt_end_frame = int(cut_off_sec * info.sample_rate)
|
| 145 |
+
|
| 146 |
+
# 6. Tokenizers
|
| 147 |
+
audio_tokenizer = AudioTokenizer(signature=signature)
|
| 148 |
+
text_tokenizer = TextTokenizer(backend="espeak")
|
| 149 |
+
|
| 150 |
+
# 7. decode_config
|
| 151 |
+
decode_config = {
|
| 152 |
+
"top_k": top_k,
|
| 153 |
+
"top_p": top_p,
|
| 154 |
+
"min_p": min_p,
|
| 155 |
+
"temperature": temperature,
|
| 156 |
+
"stop_repetition": stop_repetition,
|
| 157 |
+
"kvcache": kvcache,
|
| 158 |
+
"codec_audio_sr": codec_audio_sr,
|
| 159 |
+
"codec_sr": codec_sr,
|
| 160 |
+
"silence_tokens": silence_tokens,
|
| 161 |
+
"sample_batch_size": sample_batch_size,
|
| 162 |
}
|
| 163 |
+
|
| 164 |
+
# 8. Run inference
|
| 165 |
+
print("[Info] Running TTS inference...")
|
| 166 |
+
concated_audio, gen_audio = inference_one_sample(
|
| 167 |
+
model, args, phn2num, text_tokenizer, audio_tokenizer,
|
| 168 |
+
reference_speech, target_text,
|
| 169 |
+
device, decode_config,
|
| 170 |
+
prompt_end_frame=prompt_end_frame,
|
| 171 |
+
target_generation_length=target_generation_length,
|
| 172 |
+
delay_pattern_increment=delay_pattern_increment,
|
| 173 |
+
prefix_transcript=prefix_transcript,
|
| 174 |
+
multi_trial=multi_trial,
|
| 175 |
+
repeat_prompt=repeat_prompt,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
)
|
| 177 |
|
| 178 |
+
# The model returns a list of waveforms, pick the first
|
| 179 |
+
concated_audio, gen_audio = concated_audio[0].cpu(), gen_audio[0].cpu()
|
| 180 |
+
|
| 181 |
+
# 9. Save generated audio
|
| 182 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 183 |
+
out_filename = "generated.wav"
|
| 184 |
+
out_path = os.path.join(output_dir, out_filename)
|
| 185 |
+
torchaudio.save(out_path, gen_audio, codec_audio_sr)
|
| 186 |
+
|
| 187 |
+
print(f"[Success] Generated audio saved to {out_path}")
|
| 188 |
+
return out_path # Return the path for Gradio to load
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
############################
|
| 192 |
+
# Transcription function
|
| 193 |
+
############################
|
| 194 |
+
|
| 195 |
+
def transcribe_audio(reference_speech):
|
| 196 |
+
"""
|
| 197 |
+
Transcribe uploaded reference audio with Whisper, return text.
|
| 198 |
+
If no file, return empty string.
|
| 199 |
+
"""
|
| 200 |
+
if reference_speech is None:
|
| 201 |
+
return ""
|
| 202 |
+
audio_path = reference_speech # Because type="filepath"
|
| 203 |
+
|
| 204 |
+
if not os.path.exists(audio_path):
|
| 205 |
+
return "File not found."
|
| 206 |
+
|
| 207 |
+
print("[Info] Transcribing with Whisper...")
|
| 208 |
+
model = whisper.load_model("medium") # or "large-v2" etc.
|
| 209 |
+
result = model.transcribe(audio_path)
|
| 210 |
+
return result["text"]
|
| 211 |
+
|
| 212 |
+
############################
|
| 213 |
+
# Gradio UI
|
| 214 |
+
############################
|
| 215 |
+
|
| 216 |
+
def main():
|
| 217 |
+
with gr.Blocks() as demo:
|
| 218 |
+
gr.Markdown("## VoiceStar TTS with Editable Reference Text")
|
| 219 |
+
|
| 220 |
+
with gr.Row():
|
| 221 |
+
reference_speech_input = gr.Audio(
|
| 222 |
+
label="Reference Speech",
|
| 223 |
+
type="filepath",
|
| 224 |
+
elem_id="ref_speech"
|
| 225 |
+
)
|
| 226 |
+
transcribe_button = gr.Button("Transcribe")
|
| 227 |
+
|
| 228 |
+
# The transcribed text appears here and can be edited
|
| 229 |
+
reference_text_box = gr.Textbox(
|
| 230 |
+
label="Reference Text (Editable)",
|
| 231 |
+
placeholder="Click 'Transcribe' to auto-fill from reference speech...",
|
| 232 |
+
lines=2
|
| 233 |
+
)
|
| 234 |
+
|
| 235 |
+
target_text_box = gr.Textbox(
|
| 236 |
+
label="Target Text",
|
| 237 |
+
value="VoiceStar is a very interesting model, it's duration controllable and can extrapolate to unseen duration.",
|
| 238 |
+
lines=3
|
| 239 |
+
)
|
| 240 |
+
|
| 241 |
+
model_name_box = gr.Textbox(
|
| 242 |
+
label="Model Name",
|
| 243 |
+
value="VoiceStar_840M_40s"
|
| 244 |
+
)
|
| 245 |
+
|
| 246 |
+
model_root_box = gr.Textbox(
|
| 247 |
+
label="Model Root Directory",
|
| 248 |
+
value="/data1/scratch/pyp/BoostedVoiceEditor/runs"
|
| 249 |
+
)
|
| 250 |
+
|
| 251 |
+
reference_duration_box = gr.Textbox(
|
| 252 |
+
label="Target Duration (Optional)",
|
| 253 |
+
placeholder="Leave empty for auto-estimate."
|
| 254 |
+
)
|
| 255 |
+
|
| 256 |
+
top_k_box = gr.Number(label="top_k", value=10)
|
| 257 |
+
temperature_box = gr.Number(label="temperature", value=1.0)
|
| 258 |
+
kvcache_box = gr.Number(label="kvcache (1 or 0)", value=1)
|
| 259 |
+
repeat_prompt_box = gr.Number(label="repeat_prompt", value=1)
|
| 260 |
+
stop_repetition_box = gr.Number(label="stop_repetition", value=3)
|
| 261 |
+
seed_box = gr.Number(label="Random Seed", value=1)
|
| 262 |
+
output_dir_box = gr.Textbox(label="Output Directory", value="./generated_tts")
|
| 263 |
+
|
| 264 |
+
generate_button = gr.Button("Generate TTS")
|
| 265 |
+
output_audio = gr.Audio(label="Generated Audio", type="filepath")
|
| 266 |
+
|
| 267 |
+
# 1) When user clicks "Transcribe", we call `transcribe_audio`
|
| 268 |
+
transcribe_button.click(
|
| 269 |
+
fn=transcribe_audio,
|
| 270 |
+
inputs=[reference_speech_input],
|
| 271 |
+
outputs=[reference_text_box],
|
| 272 |
+
)
|
| 273 |
+
|
| 274 |
+
# 2) The actual TTS generation function.
|
| 275 |
+
def gradio_inference(
|
| 276 |
+
reference_speech,
|
| 277 |
+
reference_text,
|
| 278 |
+
target_text,
|
| 279 |
+
model_name,
|
| 280 |
+
model_root,
|
| 281 |
+
target_duration,
|
| 282 |
+
top_k,
|
| 283 |
+
temperature,
|
| 284 |
+
kvcache,
|
| 285 |
+
repeat_prompt,
|
| 286 |
+
stop_repetition,
|
| 287 |
+
seed,
|
| 288 |
+
output_dir
|
| 289 |
+
):
|
| 290 |
+
# Convert any empty strings to None for optional fields
|
| 291 |
+
dur = float(target_duration) if target_duration else None
|
| 292 |
+
|
| 293 |
+
out_path = run_inference(
|
| 294 |
+
reference_speech=reference_speech,
|
| 295 |
+
reference_text=reference_text if reference_text else None,
|
| 296 |
+
target_text=target_text,
|
| 297 |
+
model_name=model_name,
|
| 298 |
+
model_root=model_root,
|
| 299 |
+
target_duration=dur,
|
| 300 |
+
top_k=int(top_k),
|
| 301 |
+
temperature=float(temperature),
|
| 302 |
+
kvcache=int(kvcache),
|
| 303 |
+
repeat_prompt=int(repeat_prompt),
|
| 304 |
+
stop_repetition=int(stop_repetition),
|
| 305 |
+
seed=int(seed),
|
| 306 |
+
output_dir=output_dir
|
| 307 |
+
)
|
| 308 |
+
return out_path
|
| 309 |
+
|
| 310 |
+
# 3) Link the "Generate TTS" button
|
| 311 |
+
generate_button.click(
|
| 312 |
+
fn=gradio_inference,
|
| 313 |
+
inputs=[
|
| 314 |
+
reference_speech_input,
|
| 315 |
+
reference_text_box,
|
| 316 |
+
target_text_box,
|
| 317 |
+
model_name_box,
|
| 318 |
+
model_root_box,
|
| 319 |
+
reference_duration_box,
|
| 320 |
+
top_k_box,
|
| 321 |
+
temperature_box,
|
| 322 |
+
kvcache_box,
|
| 323 |
+
repeat_prompt_box,
|
| 324 |
+
stop_repetition_box,
|
| 325 |
+
seed_box,
|
| 326 |
+
output_dir_box
|
| 327 |
+
],
|
| 328 |
+
outputs=[output_audio],
|
| 329 |
+
)
|
| 330 |
+
|
| 331 |
+
demo.launch(server_name="0.0.0.0", server_port=7860, debug=True)
|
| 332 |
+
|
| 333 |
+
if __name__ == "__main__":
|
| 334 |
+
main()
|