Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,234 +1,112 @@
|
|
| 1 |
-
import spaces
|
| 2 |
import gradio as gr
|
| 3 |
-
import
|
| 4 |
-
import
|
| 5 |
-
import
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
value=None,
|
| 46 |
-
interactive=bool(valid_instruments)
|
| 47 |
-
)
|
| 48 |
-
]
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
class RealtimeStream(TextIOBase):
|
| 52 |
-
def __init__(self, queue):
|
| 53 |
-
self.queue = queue
|
| 54 |
-
|
| 55 |
-
def write(self, text):
|
| 56 |
-
self.queue.put(text)
|
| 57 |
-
return len(text)
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
def save_and_convert(abc_content, period, composer, instrumentation):
|
| 61 |
-
if not all([period, composer, instrumentation]):
|
| 62 |
-
raise gr.Error("Please complete a valid generation first before saving")
|
| 63 |
-
|
| 64 |
-
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 65 |
-
prompt_str = f"{period}_{composer}_{instrumentation}"
|
| 66 |
-
filename_base = f"{timestamp}_{prompt_str}"
|
| 67 |
-
|
| 68 |
-
abc_filename = f"{filename_base}.abc"
|
| 69 |
-
with open(abc_filename, "w", encoding="utf-8") as f:
|
| 70 |
-
f.write(abc_content)
|
| 71 |
-
|
| 72 |
-
xml_filename = f"{filename_base}.xml"
|
| 73 |
try:
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
process_output = ""
|
| 107 |
-
while thread.is_alive():
|
| 108 |
-
try:
|
| 109 |
-
text = output_queue.get(timeout=0.1)
|
| 110 |
-
process_output += text
|
| 111 |
-
yield process_output, None
|
| 112 |
-
except queue.Empty:
|
| 113 |
-
continue
|
| 114 |
-
|
| 115 |
-
while not output_queue.empty():
|
| 116 |
-
text = output_queue.get()
|
| 117 |
-
process_output += text
|
| 118 |
-
yield process_output, None
|
| 119 |
-
|
| 120 |
-
final_result = result_container[0] if result_container else ""
|
| 121 |
-
yield process_output, final_result
|
| 122 |
-
|
| 123 |
-
with gr.Blocks() as demo:
|
| 124 |
-
gr.Markdown("## NotaGen")
|
| 125 |
|
| 126 |
with gr.Row():
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
instrument_dd = gr.Dropdown(
|
| 142 |
-
choices=[],
|
| 143 |
-
value=None,
|
| 144 |
-
label="Instrumentation",
|
| 145 |
-
interactive=False
|
| 146 |
-
)
|
| 147 |
-
|
| 148 |
-
generate_btn = gr.Button("Generate!", variant="primary")
|
| 149 |
-
|
| 150 |
-
process_output = gr.Textbox(
|
| 151 |
-
label="Generation process",
|
| 152 |
-
interactive=False,
|
| 153 |
-
lines=15,
|
| 154 |
-
max_lines=15,
|
| 155 |
-
placeholder="Generation progress will be shown here...",
|
| 156 |
-
elem_classes="process-output"
|
| 157 |
)
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
interactive=False,
|
| 175 |
-
visible=True,
|
| 176 |
-
max_lines=2
|
| 177 |
-
)
|
| 178 |
-
|
| 179 |
-
period_dd.change(
|
| 180 |
-
update_components,
|
| 181 |
-
inputs=[period_dd, composer_dd],
|
| 182 |
-
outputs=[composer_dd, instrument_dd]
|
| 183 |
-
)
|
| 184 |
-
composer_dd.change(
|
| 185 |
-
update_components,
|
| 186 |
-
inputs=[period_dd, composer_dd],
|
| 187 |
-
outputs=[composer_dd, instrument_dd]
|
| 188 |
)
|
| 189 |
-
|
| 190 |
-
generate_btn.click(
|
| 191 |
-
generate_music,
|
| 192 |
-
inputs=[period_dd, composer_dd, instrument_dd],
|
| 193 |
-
outputs=[process_output, final_output]
|
| 194 |
-
)
|
| 195 |
-
|
| 196 |
-
save_btn.click(
|
| 197 |
-
save_and_convert,
|
| 198 |
-
inputs=[final_output, period_dd, composer_dd, instrument_dd],
|
| 199 |
-
outputs=[save_status]
|
| 200 |
-
)
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
css = """
|
| 204 |
-
.process-output {
|
| 205 |
-
background-color: #f0f0f0;
|
| 206 |
-
font-family: monospace;
|
| 207 |
-
padding: 10px;
|
| 208 |
-
border-radius: 5px;
|
| 209 |
-
}
|
| 210 |
-
.final-output {
|
| 211 |
-
background-color: #ffffff;
|
| 212 |
-
font-family: sans-serif;
|
| 213 |
-
padding: 10px;
|
| 214 |
-
border-radius: 5px;
|
| 215 |
-
}
|
| 216 |
-
|
| 217 |
-
.process-output textarea {
|
| 218 |
-
max-height: 500px !important;
|
| 219 |
-
overflow-y: auto !important;
|
| 220 |
-
white-space: pre-wrap;
|
| 221 |
-
}
|
| 222 |
-
|
| 223 |
-
"""
|
| 224 |
-
css += """
|
| 225 |
-
button#💾-save-convert:hover {
|
| 226 |
-
background-color: #ffe6e6;
|
| 227 |
-
}
|
| 228 |
-
"""
|
| 229 |
-
|
| 230 |
-
demo.css = css
|
| 231 |
-
|
| 232 |
-
if __name__ == "__main__":
|
| 233 |
|
| 234 |
-
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from PIL import Image
|
| 3 |
+
from transformers import AutoModelForCausalLM, AutoProcessor
|
| 4 |
+
from starvector.data.util import process_and_rasterize_svg
|
| 5 |
+
import torch
|
| 6 |
+
import io
|
| 7 |
+
|
| 8 |
+
USE_BOTH_MODELS = True # Set this to True to load both models
|
| 9 |
+
|
| 10 |
+
# Load models at startup
|
| 11 |
+
models = {}
|
| 12 |
+
if USE_BOTH_MODELS:
|
| 13 |
+
# Load 8b model
|
| 14 |
+
model_name_8b = "starvector/starvector-8b-im2svg"
|
| 15 |
+
models['8b'] = {
|
| 16 |
+
'model': AutoModelForCausalLM.from_pretrained(model_name_8b, torch_dtype=torch.float16, trust_remote_code=True),
|
| 17 |
+
'processor': None # Will be set below
|
| 18 |
+
}
|
| 19 |
+
models['8b']['model'].cuda()
|
| 20 |
+
models['8b']['model'].eval()
|
| 21 |
+
models['8b']['processor'] = models['8b']['model'].model.processor
|
| 22 |
+
|
| 23 |
+
# Load 1b model
|
| 24 |
+
model_name_1b = "starvector/starvector-1b-im2svg"
|
| 25 |
+
models['1b'] = {
|
| 26 |
+
'model': AutoModelForCausalLM.from_pretrained(model_name_1b, torch_dtype=torch.float16, trust_remote_code=True),
|
| 27 |
+
'processor': None
|
| 28 |
+
}
|
| 29 |
+
models['1b']['model'].cuda()
|
| 30 |
+
models['1b']['model'].eval()
|
| 31 |
+
models['1b']['processor'] = models['1b']['model'].model.processor
|
| 32 |
+
else:
|
| 33 |
+
# Load only 8b model
|
| 34 |
+
model_name = "starvector/starvector-8b-im2svg"
|
| 35 |
+
models['8b'] = {
|
| 36 |
+
'model': AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, trust_remote_code=True),
|
| 37 |
+
'processor': None
|
| 38 |
+
}
|
| 39 |
+
models['8b']['model'].cuda()
|
| 40 |
+
models['8b']['model'].eval()
|
| 41 |
+
models['8b']['processor'] = models['8b']['model'].model.processor
|
| 42 |
+
|
| 43 |
+
def convert_to_svg(image, model_choice):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
try:
|
| 45 |
+
if image is None:
|
| 46 |
+
return None, None, "Please upload an image first"
|
| 47 |
+
|
| 48 |
+
# Select the model based on user choice
|
| 49 |
+
selected_model = models[model_choice]['model']
|
| 50 |
+
selected_processor = models[model_choice]['processor']
|
| 51 |
+
|
| 52 |
+
# Process the uploaded image
|
| 53 |
+
image_pil = Image.open(image)
|
| 54 |
+
image_tensor = selected_processor(image_pil, return_tensors="pt")['pixel_values'].cuda()
|
| 55 |
+
|
| 56 |
+
if not image_tensor.shape[0] == 1:
|
| 57 |
+
image_tensor = image_tensor.squeeze(0)
|
| 58 |
+
|
| 59 |
+
batch = {"image": image_tensor}
|
| 60 |
+
|
| 61 |
+
# Generate SVG
|
| 62 |
+
raw_svg = selected_model.generate_im2svg(batch, max_length=4000)[0]
|
| 63 |
+
svg, raster_image = process_and_rasterize_svg(raw_svg)
|
| 64 |
+
|
| 65 |
+
# Convert SVG string to bytes for download
|
| 66 |
+
svg_bytes = io.BytesIO(svg.encode('utf-8'))
|
| 67 |
+
|
| 68 |
+
return raster_image, svg_bytes, f"Conversion successful using {model_choice} model!"
|
| 69 |
+
except Exception as e:
|
| 70 |
+
return None, None, f"Error: {str(e)}"
|
| 71 |
+
|
| 72 |
+
# Create Blocks interface
|
| 73 |
+
with gr.Blocks(title="Image to SVG Converter") as demo:
|
| 74 |
+
gr.Markdown("# Image to SVG Converter")
|
| 75 |
+
gr.Markdown("Upload an image to convert it to SVG format using StarVector model")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
with gr.Row():
|
| 78 |
+
with gr.Column(scale=1):
|
| 79 |
+
# Input section
|
| 80 |
+
input_image = gr.Image(type="filepath", label="Upload Image")
|
| 81 |
+
if USE_BOTH_MODELS:
|
| 82 |
+
model_choice = gr.Radio(
|
| 83 |
+
choices=["8b", "1b"],
|
| 84 |
+
value="8b",
|
| 85 |
+
label="Select Model",
|
| 86 |
+
info="Choose between 8b (larger) and 1b (smaller) models"
|
| 87 |
+
)
|
| 88 |
+
convert_btn = gr.Button("Convert to SVG")
|
| 89 |
+
example = gr.Examples(
|
| 90 |
+
examples=[["assets/examples/sample-18.png"]],
|
| 91 |
+
inputs=input_image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
)
|
| 93 |
+
|
| 94 |
+
with gr.Column(scale=1):
|
| 95 |
+
# Output section
|
| 96 |
+
output_preview = gr.Image(type="pil", label="Rasterized SVG Preview")
|
| 97 |
+
output_file = gr.File(label="Download SVG")
|
| 98 |
+
status = gr.Textbox(label="Status")
|
| 99 |
+
|
| 100 |
+
# Connect button click to conversion function
|
| 101 |
+
inputs = [input_image]
|
| 102 |
+
if USE_BOTH_MODELS:
|
| 103 |
+
inputs.append(model_choice)
|
| 104 |
+
|
| 105 |
+
convert_btn.click(
|
| 106 |
+
fn=convert_to_svg,
|
| 107 |
+
inputs=inputs,
|
| 108 |
+
outputs=[output_preview, output_file, status]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
+
# Launch the app
|
| 112 |
+
demo.launch()
|