Spaces:
Runtime error
Runtime error
| import copy, logging | |
| import numbers | |
| from functools import partial | |
| from typing import Any, Callable, List, Optional, Tuple, Union | |
| import torch | |
| from torch import Tensor, nn | |
| from torch.nn import functional as F | |
| from .activation import MultiheadAttention | |
| from .scaling import ActivationBalancer, BalancedDoubleSwish | |
| from .scaling import BasicNorm as _BasicNorm | |
| _shape_t = Union[int, List[int], torch.Size] | |
| class LayerNorm(nn.Module): | |
| __constants__ = ["normalized_shape", "eps", "elementwise_affine"] | |
| normalized_shape: Tuple[int, ...] | |
| eps: float | |
| elementwise_affine: bool | |
| def __init__( | |
| self, | |
| normalized_shape: _shape_t, | |
| eps: float = 1e-5, | |
| elementwise_affine: bool = True, | |
| device=None, | |
| dtype=None, | |
| ) -> None: | |
| factory_kwargs = {"device": device, "dtype": dtype} | |
| super(LayerNorm, self).__init__() | |
| if isinstance(normalized_shape, numbers.Integral): | |
| # mypy error: incompatible types in assignment | |
| normalized_shape = (normalized_shape,) # type: ignore[assignment] | |
| self.normalized_shape = tuple(normalized_shape) # type: ignore[arg-type] | |
| self.eps = eps | |
| self.elementwise_affine = elementwise_affine | |
| if self.elementwise_affine: | |
| self.weight = nn.Parameter( | |
| torch.empty(self.normalized_shape, **factory_kwargs) | |
| ) | |
| self.bias = nn.Parameter( | |
| torch.empty(self.normalized_shape, **factory_kwargs) | |
| ) | |
| else: | |
| self.register_parameter("weight", None) | |
| self.register_parameter("bias", None) | |
| self.reset_parameters() | |
| def reset_parameters(self) -> None: | |
| if self.elementwise_affine: | |
| nn.init.ones_(self.weight) | |
| nn.init.zeros_(self.bias) | |
| def forward(self, input: Tensor, embedding: Any = None) -> Tensor: | |
| if isinstance(input, tuple): | |
| input, embedding = input | |
| return ( | |
| F.layer_norm( | |
| input, | |
| self.normalized_shape, | |
| self.weight, | |
| self.bias, | |
| self.eps, | |
| ), | |
| embedding, | |
| ) | |
| assert embedding is None | |
| return F.layer_norm( | |
| input, self.normalized_shape, self.weight, self.bias, self.eps | |
| ) | |
| def extra_repr(self) -> str: | |
| return ( | |
| "{normalized_shape}, eps={eps}, " | |
| "elementwise_affine={elementwise_affine}".format(**self.__dict__) | |
| ) | |
| class AdaptiveLayerNorm(nn.Module): | |
| r"""Adaptive Layer Normalization""" | |
| def __init__(self, d_model, norm) -> None: | |
| super(AdaptiveLayerNorm, self).__init__() | |
| self.project_layer = nn.Linear(d_model, 2 * d_model) | |
| self.norm = norm | |
| self.d_model = d_model | |
| self.eps = self.norm.eps | |
| def forward(self, input: Tensor, embedding: Tensor = None) -> Tensor: | |
| if isinstance(input, tuple): | |
| input, embedding = input | |
| weight, bias = torch.split( | |
| self.project_layer(embedding), | |
| split_size_or_sections=self.d_model, | |
| dim=-1, | |
| ) | |
| return (weight * self.norm(input) + bias, embedding) | |
| weight, bias = torch.split( | |
| self.project_layer(embedding), | |
| split_size_or_sections=self.d_model, | |
| dim=-1, | |
| ) | |
| return weight * self.norm(input) + bias | |
| class BasicNorm(_BasicNorm): | |
| def __init__( | |
| self, | |
| d_model: int, | |
| eps: float = 1e-5, | |
| device=None, | |
| dtype=None, | |
| ): | |
| super(BasicNorm, self).__init__(d_model, eps=eps) | |
| def forward(self, input: Tensor, embedding: Any = None) -> Tensor: | |
| if isinstance(input, tuple): | |
| input, embedding = input | |
| return ( | |
| super(BasicNorm, self).forward(input), | |
| embedding, | |
| ) | |
| assert embedding is None | |
| return super(BasicNorm, self).forward(input) | |
| class BalancedBasicNorm(nn.Module): | |
| def __init__( | |
| self, | |
| d_model: int, | |
| eps: float = 1e-5, | |
| device=None, | |
| dtype=None, | |
| ): | |
| super(BalancedBasicNorm, self).__init__() | |
| self.balancer = ActivationBalancer( | |
| d_model, | |
| channel_dim=-1, | |
| min_positive=0.45, | |
| max_positive=0.55, | |
| max_abs=6.0, | |
| ) | |
| self.norm = BasicNorm(d_model, eps, device=device, dtype=dtype) | |
| def forward(self, input: Tensor, embedding: Any = None) -> Tensor: | |
| if isinstance(input, tuple): | |
| input, embedding = input | |
| return self.norm((self.balancer(input), embedding)) | |
| assert embedding is None | |
| return self.norm(self.balancer(input)) | |
| class IdentityNorm(nn.Module): | |
| def __init__( | |
| self, | |
| d_model: int, | |
| eps: float = 1e-5, | |
| device=None, | |
| dtype=None, | |
| ) -> None: | |
| super(IdentityNorm, self).__init__() | |
| def forward(self, input: Tensor, embedding: Any = None) -> Tensor: | |
| if isinstance(input, tuple): | |
| return input | |
| assert embedding is None | |
| return input | |
| class TransformerEncoderLayer(nn.Module): | |
| __constants__ = ["batch_first", "norm_first"] | |
| def __init__( | |
| self, | |
| d_model: int, | |
| nhead: int, | |
| dim_feedforward: int = 2048, | |
| dropout: float = 0.1, | |
| activation: Union[str, Callable[[Tensor], Tensor]] = F.relu, | |
| batch_first: bool = False, | |
| norm_first: bool = False, | |
| device=None, | |
| dtype=None, | |
| linear1_self_attention_cls: nn.Module = nn.Linear, | |
| linear2_self_attention_cls: nn.Module = nn.Linear, | |
| linear1_feedforward_cls: nn.Module = nn.Linear, | |
| linear2_feedforward_cls: nn.Module = nn.Linear, | |
| layer_norm_cls: nn.Module = LayerNorm, | |
| layer_norm_eps: float = 1e-5, | |
| adaptive_layer_norm=False, | |
| ) -> None: | |
| factory_kwargs = {"device": device, "dtype": dtype} | |
| super(TransformerEncoderLayer, self).__init__() | |
| self.self_attn = MultiheadAttention( | |
| d_model, | |
| nhead, | |
| dropout=dropout, | |
| batch_first=batch_first, | |
| linear1_cls=linear1_self_attention_cls, | |
| linear2_cls=linear2_self_attention_cls, | |
| **factory_kwargs, | |
| ) | |
| # Implementation of Feedforward model | |
| self.linear1 = linear1_feedforward_cls( | |
| d_model, dim_feedforward, **factory_kwargs | |
| ) | |
| self.dropout = nn.Dropout(dropout) | |
| self.linear2 = linear2_feedforward_cls( | |
| dim_feedforward, d_model, **factory_kwargs | |
| ) | |
| self.norm_first = norm_first | |
| self.dropout1 = nn.Dropout(dropout) | |
| self.dropout2 = nn.Dropout(dropout) | |
| # Legacy string support for activation function. | |
| if isinstance(activation, str): | |
| activation = _get_activation_fn(activation) | |
| elif isinstance(activation, partial): | |
| activation = activation(d_model) | |
| elif activation == BalancedDoubleSwish: | |
| activation = BalancedDoubleSwish(d_model) | |
| # # We can't test self.activation in forward() in TorchScript, | |
| # # so stash some information about it instead. | |
| # if activation is F.relu or isinstance(activation, torch.nn.ReLU): | |
| # self.activation_relu_or_gelu = 1 | |
| # elif activation is F.gelu or isinstance(activation, torch.nn.GELU): | |
| # self.activation_relu_or_gelu = 2 | |
| # else: | |
| # self.activation_relu_or_gelu = 0 | |
| self.activation = activation | |
| norm1 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs) | |
| if layer_norm_cls == IdentityNorm: | |
| norm2 = BalancedBasicNorm( | |
| d_model, eps=layer_norm_eps, **factory_kwargs | |
| ) | |
| else: | |
| norm2 = layer_norm_cls( | |
| d_model, eps=layer_norm_eps, **factory_kwargs | |
| ) | |
| if adaptive_layer_norm: | |
| self.norm1 = AdaptiveLayerNorm(d_model, norm1) | |
| self.norm2 = AdaptiveLayerNorm(d_model, norm2) | |
| else: | |
| self.norm1 = norm1 | |
| self.norm2 = norm2 | |
| def __setstate__(self, state): | |
| super(TransformerEncoderLayer, self).__setstate__(state) | |
| if not hasattr(self, "activation"): | |
| self.activation = F.relu | |
| def forward( | |
| self, | |
| src, | |
| src_mask: Optional[Tensor] = None, | |
| src_key_padding_mask: Optional[Tensor] = None, | |
| need_weights: Optional[bool] = False, | |
| past: Optional[Tensor] = None, | |
| ) -> Tensor: | |
| r"""Pass the input through the encoder layer. | |
| Args: | |
| src: the sequence to the encoder layer (required). | |
| src_mask: the mask for the src sequence (optional). | |
| src_key_padding_mask: the mask for the src keys per batch (optional). | |
| Shape: | |
| see the docs in Transformer class. | |
| """ | |
| if isinstance(src, dict): | |
| sinu = src["sinu"] | |
| pm_sinu = src["pm_sinu"] | |
| src = src["input"] | |
| else: | |
| sinu = None | |
| pm_sinu = None | |
| x, stage_embedding = src, None | |
| is_src_tuple = False | |
| if isinstance(src, tuple): | |
| x, stage_embedding = src | |
| is_src_tuple = True | |
| if src_key_padding_mask is not None: | |
| _skpm_dtype = src_key_padding_mask.dtype | |
| if _skpm_dtype != torch.bool and not torch.is_floating_point( | |
| src_key_padding_mask | |
| ): | |
| raise AssertionError( | |
| "only bool and floating types of key_padding_mask are supported" | |
| ) | |
| if need_weights: | |
| raise NotImplementedError | |
| if self.norm_first: | |
| out, attn = self._sa_block_attn( | |
| self.norm1(x, stage_embedding), | |
| src_mask, | |
| src_key_padding_mask, | |
| past, sinu = sinu | |
| ) | |
| out, present = out # present is the kvcache of the present timestep | |
| x = x + out | |
| x = x + self._ff_block(self.norm2(x, stage_embedding)) | |
| else: | |
| out, attn = self._sa_block_attn(x, src_mask, src_key_padding_mask, past, sinu = sinu) | |
| out, present = out # present is the kvcache of the present timestep | |
| x = self.norm1( | |
| x + out, | |
| stage_embedding, | |
| ) | |
| x = self.norm2(x + self._ff_block(x), stage_embedding) | |
| assert not is_src_tuple | |
| # return (x, stage_embedding) | |
| return (x, attn) | |
| else: | |
| if self.norm_first: | |
| out = self._sa_block( | |
| self.norm1(x, stage_embedding), | |
| src_mask, | |
| src_key_padding_mask, past, sinu = sinu, q_sinu=pm_sinu['q'], k_sinu=pm_sinu['q'] | |
| ) | |
| out, present = out # present is the kvcache of the present timestep | |
| x = x + out | |
| x = x + self._ff_block(self.norm2(x, stage_embedding)) | |
| else: | |
| out = self._sa_block(x, src_mask, src_key_padding_mask, sinu = sinu, q_sinu=pm_sinu['q'], k_sinu=pm_sinu['q']) | |
| out, present = out # present is the kvcache of the present timestep | |
| x = self.norm1( | |
| x + out, | |
| stage_embedding, past | |
| ) | |
| x = self.norm2(x + self._ff_block(x), stage_embedding) | |
| if is_src_tuple: | |
| x = (x, stage_embedding) | |
| if present != None: | |
| x = [x, present] | |
| return x | |
| # self-attention block | |
| def _sa_block( | |
| self, | |
| x: Tensor, | |
| attn_mask: Optional[Tensor], | |
| key_padding_mask: Optional[Tensor], | |
| past: Optional[Tensor] = None, | |
| sinu = None, | |
| q_sinu = None, | |
| k_sinu = None | |
| ) -> Tensor: | |
| x = self.self_attn( | |
| x, | |
| x, | |
| x, | |
| attn_mask=attn_mask, | |
| key_padding_mask=key_padding_mask, | |
| need_weights=False, | |
| past=past, | |
| sinu = sinu, | |
| q_sinu = q_sinu, | |
| k_sinu = k_sinu | |
| ) | |
| x, present = x | |
| return self.dropout1(x), present | |
| # self-attention block, also return attention weights | |
| def _sa_block_attn( | |
| self, | |
| x: Tensor, | |
| attn_mask: Optional[Tensor], | |
| key_padding_mask: Optional[Tensor], | |
| past: Optional[Tensor] = None, | |
| ) -> Tensor: | |
| x, attn = self.self_attn( | |
| x, | |
| x, | |
| x, | |
| attn_mask=attn_mask, | |
| key_padding_mask=key_padding_mask, | |
| need_weights=True, | |
| past=past | |
| ) | |
| x, present = x | |
| return (self.dropout1(x), present), attn | |
| # feed forward block | |
| def _ff_block(self, x: Tensor) -> Tensor: | |
| x = self.linear2(self.dropout(self.activation(self.linear1(x)))) | |
| return self.dropout2(x) | |
| def pre_compute_sinusoidal(dim, base, max_len = 10000): # 4000 max length equivalent of mimi code is 320s, as mimi is 12.5hz | |
| inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.int64).float() / dim)) | |
| position_ids_expanded = torch.arange(0, max_len, dtype=torch.float32).unsqueeze(1) # [x_len_max, 1] | |
| inv_freq_expanded = inv_freq.unsqueeze(0).float() # [1, d//2] | |
| freqs = position_ids_expanded @ inv_freq_expanded # [x_len_max, d//2] | |
| freqs = torch.cat((freqs, freqs), dim=-1).unsqueeze(0) # [1, x_len_max, d] | |
| return {"sin": freqs.sin(), "cos": freqs.cos()} | |
| def pre_compute_freqs(dim, base, max_len = 10000): # 4000 max length equivalent of mimi code is 320s, as mimi is 12.5hz | |
| inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.int64).float() / dim)) | |
| position_ids_expanded = torch.arange(0, max_len, dtype=torch.float32).unsqueeze(1) # [x_len_max, 1] | |
| inv_freq_expanded = inv_freq.unsqueeze(0).float() # [1, d//2] | |
| freqs = position_ids_expanded @ inv_freq_expanded # [x_len_max, d//2] | |
| freqs = torch.cat((freqs, freqs), dim=-1).unsqueeze(0) # [1, x_len_max, d] | |
| return freqs | |
| class TransformerEncoder(nn.Module): | |
| r"""TransformerEncoder is a stack of N encoder layers. Users can build the | |
| BERT(https://arxiv.org/abs/1810.04805) model with corresponding parameters. | |
| Args: | |
| encoder_layer: an instance of the TransformerEncoderLayer() class (required). | |
| num_layers: the number of sub-encoder-layers in the encoder (required). | |
| norm: the layer normalization component (optional). | |
| enable_nested_tensor: if True, input will automatically convert to nested tensor | |
| (and convert back on output). This will improve the overall performance of | |
| TransformerEncoder when padding rate is high. Default: ``True`` (enabled). | |
| Examples:: | |
| >>> encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8) | |
| >>> transformer_encoder = TransformerEncoder(encoder_layer, num_layers=6) | |
| >>> src = torch.rand(10, 32, 512) | |
| >>> out = transformer_encoder(src) | |
| """ | |
| __constants__ = ["norm"] | |
| def __init__(self, encoder_layer, num_layers, norm=None, rope_base=None, d_model=None, nhead=None, args=None): | |
| super(TransformerEncoder, self).__init__() | |
| self.layers = _get_clones(encoder_layer, num_layers) | |
| self.num_layers = num_layers | |
| self.norm = norm | |
| if args != None: | |
| self.progress_no_multiple = args.progress_no_multiple | |
| self.progress_scale = args.progress_scale | |
| else: | |
| self.progress_no_multiple = False | |
| self.progress_scale = 1 | |
| if rope_base is not None: | |
| if self.progress_no_multiple: | |
| self.pm_freqs = pre_compute_freqs(d_model//nhead, rope_base) | |
| self.sinu = None | |
| else: | |
| self.sinu = pre_compute_sinusoidal(d_model/nhead, rope_base) | |
| self.pm_freqs = None | |
| # logging.info(f"get precomputed sinusoidal for {rope_base=}: {self.sinu=}") | |
| else: | |
| self.sinu = None | |
| self.pm_freqs = None | |
| def forward( | |
| self, | |
| src: Tensor, | |
| mask: Optional[Tensor] = None, | |
| src_key_padding_mask: Optional[Tensor] = None, | |
| return_layer_states: bool = False, | |
| need_weights:Optional[bool] = False, | |
| past: Optional[Tensor] = None, | |
| ) -> Tensor: | |
| r"""Pass the input through the encoder layers in turn. | |
| Args: | |
| src: the sequence to the encoder (required). | |
| mask: the mask for the src sequence (optional). | |
| src_key_padding_mask: the mask for the src keys per batch (optional). | |
| return_layer_states: return layers' state (optional). | |
| Shape: | |
| see the docs in Transformer class. | |
| """ | |
| if return_layer_states: | |
| raise NotImplementedError | |
| assert not need_weights | |
| layer_states = [] # layers' output | |
| output = src | |
| for mod in self.layers: | |
| output = mod( | |
| output, | |
| src_mask=mask, | |
| src_key_padding_mask=src_key_padding_mask, | |
| past=past | |
| ) | |
| layer_states.append(output[0]) | |
| if self.norm is not None: | |
| output = self.norm(output) | |
| return layer_states, output | |
| if need_weights: | |
| raise NotImplementedError | |
| assert not return_layer_states | |
| layer_attn = [] # layers' output | |
| output = src | |
| for mod in self.layers: | |
| output = mod( | |
| output, | |
| src_mask=mask, | |
| src_key_padding_mask=src_key_padding_mask, | |
| need_weights=True, | |
| past=past | |
| ) | |
| layer_attn.append(output[1]) | |
| if self.norm is not None: | |
| output = self.norm(output) | |
| return layer_attn, output | |
| output = src | |
| all_present = [] | |
| if self.sinu is not None: | |
| # use rope | |
| assert self.pm_freqs is None | |
| for k, v in self.sinu.items(): | |
| self.sinu[k] = v.to(output.device) | |
| if self.pm_freqs is not None: | |
| assert self.sinu is None | |
| self.pm_freqs = self.pm_freqs.to(output.device) | |
| if src_key_padding_mask != None: | |
| query_lens = (~src_key_padding_mask).int().sum(-1).to(output.device) | |
| else: | |
| query_lens = torch.tensor([output.shape[1]]*output.shape[0]).to(output.device) | |
| assert query_lens.ndim==1, query_lens | |
| q_lens_expanded = query_lens.unsqueeze(-1).unsqueeze(-1) # [B, 1, 1] | |
| query_ids_multiple = q_lens_expanded / (q_lens_expanded - 1) | |
| q_emb = self.pm_freqs * query_ids_multiple # [B, q_len_max, d] | |
| q_emb = q_emb / q_lens_expanded * self.progress_scale | |
| q_cos = q_emb.cos().unsqueeze(1) # [B, 1, q_len_max, d] # 1 is for nhead | |
| q_sin = q_emb.sin().unsqueeze(1) | |
| self.pm_sinu = {"q": {"cos": q_cos, "sin": q_sin}} | |
| else: | |
| self.pm_sinu = {"q": None} | |
| output = {"input": output, "sinu": self.sinu, "pm_sinu": self.pm_sinu} | |
| for n_layer, mod in enumerate(self.layers): | |
| output = mod( | |
| output, src_mask=mask, src_key_padding_mask=src_key_padding_mask, past=None if past is None else past[n_layer] | |
| ) | |
| if isinstance(output, list): | |
| output, present = output | |
| all_present.append(present) | |
| if self.sinu is not None or self.pm_sinu is not None: | |
| output = {"input": output, "sinu": self.sinu, "pm_sinu": self.pm_sinu} | |
| if self.sinu is not None or self.pm_sinu is not None: | |
| output = output["input"] | |
| if self.norm is not None: | |
| output = self.norm(output) | |
| if all_present != []: | |
| all_present = torch.stack(all_present, dim=0) # (num_layers, 2, batch_size, num_heads, seq_len, head_dim) | |
| output = [output, all_present] | |
| return output | |
| class TransformerDecoderLayer(nn.Module): | |
| __constants__ = ["batch_first", "norm_first"] | |
| def __init__( | |
| self, | |
| d_model: int, | |
| nhead: int, | |
| dim_feedforward: int = 2048, | |
| dropout: float = 0.1, | |
| activation: Union[str, Callable[[Tensor], Tensor]] = F.relu, | |
| linear1_self_attention_cls: nn.Module = nn.Linear, | |
| linear2_self_attention_cls: nn.Module = nn.Linear, | |
| linear1_feedforward_cls: nn.Module = nn.Linear, | |
| linear2_feedforward_cls: nn.Module = nn.Linear, | |
| batch_first: bool = False, | |
| norm_first: bool = False, | |
| device=None, | |
| dtype=None, | |
| layer_norm_cls: nn.Module = LayerNorm, | |
| layer_norm_eps: float = 1e-5, | |
| adaptive_layer_norm=False, | |
| ) -> None: | |
| factory_kwargs = {"device": device, "dtype": dtype} | |
| super(TransformerDecoderLayer, self).__init__() | |
| self.self_attn = MultiheadAttention( | |
| d_model, | |
| nhead, | |
| dropout=dropout, | |
| batch_first=batch_first, | |
| linear1_cls=linear1_self_attention_cls, | |
| linear2_cls=linear2_self_attention_cls, | |
| **factory_kwargs, | |
| ) | |
| self.multihead_attn = MultiheadAttention( | |
| d_model, | |
| nhead, | |
| dropout=dropout, | |
| batch_first=batch_first, | |
| linear1_cls=linear1_self_attention_cls, | |
| linear2_cls=linear2_self_attention_cls, | |
| **factory_kwargs, | |
| ) | |
| # Implementation of Feedforward model | |
| self.linear1 = linear1_feedforward_cls( | |
| d_model, dim_feedforward, **factory_kwargs | |
| ) | |
| self.dropout = nn.Dropout(dropout) | |
| self.linear2 = linear2_feedforward_cls( | |
| dim_feedforward, d_model, **factory_kwargs | |
| ) | |
| self.norm_first = norm_first | |
| self.dropout1 = nn.Dropout(dropout) | |
| self.dropout2 = nn.Dropout(dropout) | |
| self.dropout3 = nn.Dropout(dropout) | |
| # Legacy string support for activation function. | |
| if isinstance(activation, str): | |
| self.activation = _get_activation_fn(activation) | |
| elif isinstance(activation, partial): | |
| self.activation = activation(d_model) | |
| elif activation == BalancedDoubleSwish: | |
| self.activation = BalancedDoubleSwish(d_model) | |
| else: | |
| self.activation = activation | |
| if adaptive_layer_norm: | |
| norm1 = layer_norm_cls( | |
| d_model, eps=layer_norm_eps, **factory_kwargs | |
| ) | |
| norm2 = layer_norm_cls( | |
| d_model, eps=layer_norm_eps, **factory_kwargs | |
| ) | |
| norm3 = layer_norm_cls( | |
| d_model, eps=layer_norm_eps, **factory_kwargs | |
| ) | |
| self.norm1 = AdaptiveLayerNorm(d_model, norm1) | |
| self.norm2 = AdaptiveLayerNorm(d_model, norm2) | |
| self.norm3 = AdaptiveLayerNorm(d_model, norm3) | |
| else: | |
| self.norm1 = layer_norm_cls( | |
| d_model, eps=layer_norm_eps, **factory_kwargs | |
| ) | |
| self.norm2 = layer_norm_cls( | |
| d_model, eps=layer_norm_eps, **factory_kwargs | |
| ) | |
| if layer_norm_cls == IdentityNorm: | |
| self.norm3 = BalancedBasicNorm( | |
| d_model, eps=layer_norm_eps, **factory_kwargs | |
| ) | |
| else: | |
| self.norm3 = layer_norm_cls( | |
| d_model, eps=layer_norm_eps, **factory_kwargs | |
| ) | |
| def forward( | |
| self, | |
| tgt: Tensor, | |
| memory: Tensor, | |
| tgt_mask: Optional[Tensor] = None, | |
| memory_mask: Optional[Tensor] = None, | |
| tgt_key_padding_mask: Optional[Tensor] = None, | |
| memory_key_padding_mask: Optional[Tensor] = None, | |
| tgt_is_causal: Optional[bool] = False, # for compatibility with the nn.TransformerDecoder, not used | |
| memory_is_causal: Optional[bool] = False, # for compatibility with the nn.TransformerDecoder, not used | |
| past: Optional[Tensor] = None, | |
| ) -> Tensor: | |
| r"""Pass the inputs (and mask) through the decoder layer. | |
| Args: | |
| tgt: the sequence to the decoder layer (required). | |
| memory: the sequence from the last layer of the encoder (required). | |
| tgt_mask: the mask for the tgt sequence (optional). | |
| memory_mask: the mask for the memory sequence (optional). | |
| tgt_key_padding_mask: the mask for the tgt keys per batch (optional). | |
| memory_key_padding_mask: the mask for the memory keys per batch (optional). | |
| past: the previous kvcache of the decoder (optional). shape: (2, batch_size, num_heads, seq_len, head_dim) | |
| Shape: | |
| see the docs in Transformer class. | |
| """ | |
| if isinstance(tgt, dict): | |
| pm_sinu = tgt["pm_sinu"] | |
| sinu = tgt["sinu"] | |
| args = tgt["args"] | |
| tgt = tgt["input"] | |
| else: | |
| pm_sinu = None | |
| sinu = None | |
| args = None | |
| tgt_is_tuple = False | |
| if isinstance(tgt, tuple): | |
| x, stage_embedding = tgt | |
| tgt_is_tuple = True | |
| else: | |
| x, stage_embedding = tgt, None | |
| # logging.info(f"{tgt_key_padding_mask=}, {memory_key_padding_mask=}") | |
| # logging.info(f"{tgt_key_padding_mask.shape=}, {memory_key_padding_mask.shape=}") | |
| # logging.info(f"{query_lens=}, {key_lens=}") | |
| # past stores the kvcache for self-attention, and it can also be used to infer q_offset | |
| if past is not None and past.ndim > 2: | |
| q_offset = past[0].shape[-2] # past is (2, batch_size, num_heads, seq_len, head_dim), 2 contains [k, v], these are for self-attn, therefore also reflect the length of q | |
| else: | |
| q_offset = 0 | |
| if self.norm_first: | |
| temp = self._sa_block( | |
| self.norm1(x, stage_embedding), tgt_mask, tgt_key_padding_mask, q_sinu=pm_sinu['q'], k_sinu=pm_sinu['q'], sinu=sinu, args = args, past=past, q_offset=q_offset | |
| ) | |
| present = temp[1] | |
| x = x + temp[0] | |
| cross_out = self._mha_block( | |
| self.norm2(x, stage_embedding), | |
| memory, | |
| memory_mask, | |
| memory_key_padding_mask, q_sinu=pm_sinu['q'], k_sinu=pm_sinu['k'], sinu=sinu, args = args, q_offset=q_offset | |
| ) | |
| if isinstance(cross_out, dict): | |
| attention_weights = cross_out["attention_weights"] | |
| cross_out = cross_out["x"] | |
| else: | |
| attention_weights = None | |
| x = x + cross_out | |
| x = x + self._ff_block(self.norm3(x, stage_embedding)) | |
| else: | |
| temp = self._sa_block(x, tgt_mask, tgt_key_padding_mask, q_sinu=pm_sinu['q'], k_sinu=pm_sinu['q'], sinu=sinu, args = args, past=past, q_offset=q_offset) | |
| present = temp[1] | |
| x = self.norm1( | |
| x + temp[0], | |
| stage_embedding, | |
| ) | |
| cross_out = self._mha_block( | |
| x, memory, memory_mask, memory_key_padding_mask, q_sinu=pm_sinu['q'], k_sinu=pm_sinu['k'], sinu=sinu, args=args, q_offset=q_offset | |
| ) | |
| if isinstance(cross_out, dict): | |
| attention_weights = cross_out["attention_weights"] | |
| cross_out = cross_out["x"] | |
| else: | |
| attention_weights = None | |
| x = self.norm2( | |
| x | |
| + cross_out, | |
| stage_embedding, | |
| ) | |
| x = self.norm3(x + self._ff_block(x), stage_embedding) | |
| if attention_weights is not None: | |
| x = {"x": x, "attention_weights": attention_weights} | |
| if tgt_is_tuple: | |
| x = (x, stage_embedding) | |
| if present != None: | |
| x = [x, present] | |
| return x | |
| # self-attention block | |
| def _sa_block( | |
| self, | |
| x: Tensor, | |
| attn_mask: Optional[Tensor], | |
| key_padding_mask: Optional[Tensor], | |
| q_sinu=None, | |
| k_sinu=None, | |
| sinu = None, | |
| args = None, | |
| past = None, | |
| q_offset = 0 | |
| ) -> Tensor: | |
| # if past is not None and past.ndim > 2: | |
| # print(f"self-attn, k len: {past[0].shape[-2] + x.shape[-2]}, q len: {x.shape[-2]} q_offset: {q_offset}") | |
| # else: | |
| # print(f"self-attn, k len: {x.shape[-2]}, q len: {x.shape[-2]} q_offset: {q_offset}") | |
| x = self.self_attn( | |
| x, | |
| x, | |
| x, | |
| attn_mask=attn_mask, | |
| key_padding_mask=key_padding_mask, | |
| need_weights=False, | |
| q_sinu = q_sinu, | |
| k_sinu = k_sinu, | |
| sinu = sinu, | |
| past = past, | |
| q_offset = q_offset | |
| ) | |
| x, present = x | |
| return self.dropout1(x), present | |
| # multihead attention block | |
| def _mha_block( | |
| self, | |
| x: Tensor, | |
| mem: Tensor, | |
| attn_mask: Optional[Tensor], | |
| key_padding_mask: Optional[Tensor], | |
| q_sinu = None, | |
| k_sinu = None, | |
| sinu = None, | |
| args = None, | |
| q_offset = 0 | |
| ) -> Tensor: | |
| # print(f"cross-attn, k len: {mem.shape[-2]}, q len: {x.shape[-2]} q_offset: {q_offset}") | |
| x = self.multihead_attn( | |
| x, | |
| mem, | |
| mem, | |
| attn_mask=attn_mask, | |
| key_padding_mask=key_padding_mask, | |
| need_weights=False, | |
| q_sinu = q_sinu, | |
| k_sinu = k_sinu, | |
| sinu = sinu, | |
| args = args, | |
| q_offset = q_offset | |
| ) | |
| if len(x) == 2 and isinstance(x[0], dict) and "attention_weights" in x[0]: | |
| x, present = x | |
| attention_weights = x['attention_weights'] | |
| x = x['attn_output'] | |
| return {"x": self.dropout2(x), "attention_weights": attention_weights} | |
| elif len(x) == 2: | |
| x = x[0] | |
| return self.dropout2(x) | |
| # feed forward block | |
| def _ff_block(self, x: Tensor) -> Tensor: | |
| x = self.linear2(self.dropout(self.activation(self.linear1(x)))) | |
| return self.dropout3(x) | |
| def _get_clones(module, N): | |
| return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) | |
| def _get_activation_fn(activation: str) -> Callable[[Tensor], Tensor]: | |
| if activation == "relu": | |
| return F.relu | |
| elif activation == "gelu": | |
| return F.gelu | |
| raise RuntimeError( | |
| "activation should be relu/gelu, not {}".format(activation) | |
| ) | |
| def _generate_square_subsequent_mask( | |
| sz: int, | |
| device: Optional[torch.device] = None, | |
| dtype: Optional[torch.dtype] = None, | |
| ) -> Tensor: | |
| r"""Generate a square causal mask for the sequence. | |
| The masked positions are filled with float('-inf'). Unmasked positions are filled with float(0.0). | |
| """ | |
| if device is None: | |
| device = torch.device('cpu') | |
| if dtype is None: | |
| dtype = torch.float32 | |
| return torch.triu( | |
| torch.full((sz, sz), float('-inf'), dtype=dtype, device=device), | |
| diagonal=1, | |
| ) | |
| def _get_seq_len( | |
| src: Tensor, | |
| batch_first: bool | |
| ) -> Optional[int]: | |
| if src.is_nested: | |
| return None | |
| else: | |
| src_size = src.size() | |
| if len(src_size) == 2: | |
| # unbatched: S, E | |
| return src_size[0] | |
| else: | |
| # batched: B, S, E if batch_first else S, B, E | |
| seq_len_pos = 1 if batch_first else 0 | |
| return src_size[seq_len_pos] | |
| def _detect_is_causal_mask( | |
| mask: Optional[Tensor], | |
| is_causal: Optional[bool] = None, | |
| size: Optional[int] = None, | |
| ) -> bool: | |
| """Return whether the given attention mask is causal. | |
| Warning: | |
| If ``is_causal`` is not ``None``, its value will be returned as is. If a | |
| user supplies an incorrect ``is_causal`` hint, | |
| ``is_causal=False`` when the mask is in fact a causal attention.mask | |
| may lead to reduced performance relative to what would be achievable | |
| with ``is_causal=True``; | |
| ``is_causal=True`` when the mask is in fact not a causal attention.mask | |
| may lead to incorrect and unpredictable execution - in some scenarios, | |
| a causal mask may be applied based on the hint, in other execution | |
| scenarios the specified mask may be used. The choice may not appear | |
| to be deterministic, in that a number of factors like alignment, | |
| hardware SKU, etc influence the decision whether to use a mask or | |
| rely on the hint. | |
| ``size`` if not None, check whether the mask is a causal mask of the provided size | |
| Otherwise, checks for any causal mask. | |
| """ | |
| # Prevent type refinement | |
| make_causal = (is_causal is True) | |
| if is_causal is None and mask is not None: | |
| sz = size if size is not None else mask.size(-2) | |
| causal_comparison = _generate_square_subsequent_mask( | |
| sz, device=mask.device, dtype=mask.dtype) | |
| # Do not use `torch.equal` so we handle batched masks by | |
| # broadcasting the comparison. | |
| if mask.size() == causal_comparison.size(): | |
| make_causal = bool((mask == causal_comparison).all()) | |
| else: | |
| make_causal = False | |
| return make_causal | |
| class TransformerDecoder(nn.Module): | |
| r"""TransformerDecoder is a stack of N decoder layers. | |
| Args: | |
| decoder_layer: an instance of the TransformerDecoderLayer() class (required). | |
| num_layers: the number of sub-decoder-layers in the decoder (required). | |
| norm: the layer normalization component (optional). | |
| Examples:: | |
| >>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8) | |
| >>> transformer_decoder = nn.TransformerDecoder(decoder_layer, num_layers=6) | |
| >>> memory = torch.rand(10, 32, 512) | |
| >>> tgt = torch.rand(20, 32, 512) | |
| >>> out = transformer_decoder(tgt, memory) | |
| """ | |
| __constants__ = ['norm'] | |
| def __init__( | |
| self, | |
| decoder_layer: "TransformerDecoderLayer", | |
| num_layers: int, | |
| norm: Optional[nn.Module] = None, | |
| rope_base=None, | |
| d_model=None, | |
| nhead=None, | |
| args=None | |
| ) -> None: | |
| super().__init__() | |
| torch._C._log_api_usage_once(f"torch.nn.modules.{self.__class__.__name__}") | |
| self.layers = _get_clones(decoder_layer, num_layers) | |
| self.num_layers = num_layers | |
| self.norm = norm | |
| self.args = args | |
| if getattr(self.args, 'decoder_regular_rope', False): | |
| self.sinu = pre_compute_sinusoidal(d_model/nhead, rope_base) | |
| self.pm_freqs = None | |
| else: | |
| self.sinu = None | |
| if rope_base is not None: | |
| self.pm_freqs = pre_compute_freqs(d_model/nhead, rope_base) | |
| # logging.info(f"get precomputed freqs for {rope_base=}: {self.freqs=}") | |
| else: | |
| self.pm_freqs = None | |
| self.progress_scale = getattr(self.args, "progress_scale", 1.0) | |
| def forward(self, tgt: Tensor, memory: Tensor, tgt_mask: Optional[Tensor] = None, | |
| memory_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None, | |
| memory_key_padding_mask: Optional[Tensor] = None, tgt_is_causal: Optional[bool] = None, | |
| memory_is_causal: bool = False, query_lens: Optional[Tensor] = None, key_lens: Optional[Tensor] = None, past: Optional[Tensor] = None) -> Tensor: | |
| r"""Pass the inputs (and mask) through the decoder layer in turn. | |
| Args: | |
| tgt: the sequence to the decoder (required). | |
| memory: the sequence from the last layer of the encoder (required). | |
| tgt_mask: the mask for the tgt sequence (optional). | |
| memory_mask: the mask for the memory sequence (optional). | |
| tgt_key_padding_mask: the mask for the tgt keys per batch (optional). | |
| memory_key_padding_mask: the mask for the memory keys per batch (optional). | |
| tgt_is_causal: If specified, applies a causal mask as ``tgt mask``. | |
| Default: ``None``; try to detect a causal mask. | |
| Warning: | |
| ``tgt_is_causal`` provides a hint that ``tgt_mask`` is | |
| the causal mask. Providing incorrect hints can result in | |
| incorrect execution, including forward and backward | |
| compatibility. | |
| memory_is_causal: If specified, applies a causal mask as | |
| ``memory mask``. | |
| Default: ``False``. | |
| Warning: | |
| ``memory_is_causal`` provides a hint that | |
| ``memory_mask`` is the causal mask. Providing incorrect | |
| hints can result in incorrect execution, including | |
| forward and backward compatibility. | |
| Shape: | |
| see the docs in :class:`~torch.nn.Transformer`. | |
| """ | |
| output = tgt | |
| # seq_len = _get_seq_len(tgt, self.layers[0].self_attn.batch_first) | |
| # tgt_is_causal = _detect_is_causal_mask(tgt_mask, tgt_is_causal, seq_len) | |
| if self.sinu is not None: | |
| assert self.pm_freqs is None | |
| for key in self.sinu: | |
| self.sinu[key] = self.sinu[key].to(output.device) | |
| if self.pm_freqs is not None: | |
| assert self.sinu is None | |
| if not self.training and hasattr(self, "pm_sinu") and past is not None and past[0].ndim > 2: # inference mode, will use cached sinu for the same example | |
| assert self.pm_sinu['q'] is not None and self.pm_sinu['k'] is not None | |
| # check batch size, need to modify the batch size if we use multi_trial during inference | |
| if self.pm_sinu['q']['cos'].shape[0] != tgt.shape[0]: | |
| if self.pm_sinu['q']['cos'].shape[0] > tgt.shape[0]: | |
| self.pm_sinu['q']['cos'] = self.pm_sinu['q']['cos'][:tgt.shape[0]] | |
| self.pm_sinu['q']['sin'] = self.pm_sinu['q']['sin'][:tgt.shape[0]] | |
| self.pm_sinu['k']['cos'] = self.pm_sinu['k']['cos'][:tgt.shape[0]] | |
| self.pm_sinu['k']['sin'] = self.pm_sinu['k']['sin'][:tgt.shape[0]] | |
| else: | |
| assert self.pm_sinu['q']['cos'].shape[0] == 1 | |
| self.pm_sinu['q']['cos'] = self.pm_sinu['q']['cos'].repeat(tgt.shape[0], 1, 1, 1) | |
| self.pm_sinu['q']['sin'] = self.pm_sinu['q']['sin'].repeat(tgt.shape[0], 1, 1, 1) | |
| self.pm_sinu['k']['cos'] = self.pm_sinu['k']['cos'].repeat(tgt.shape[0], 1, 1, 1) | |
| self.pm_sinu['k']['sin'] = self.pm_sinu['k']['sin'].repeat(tgt.shape[0], 1, 1, 1) | |
| pass | |
| else: | |
| self.pm_freqs = self.pm_freqs.to(output.device) | |
| if query_lens is None: | |
| query_lens = (~tgt_key_padding_mask).int().sum(-1).to(tgt.device) | |
| if key_lens is None: | |
| key_lens = (~memory_key_padding_mask).int().sum(-1).to(tgt.device) | |
| assert key_lens.ndim==1, key_lens | |
| assert query_lens.ndim==1, query_lens | |
| q_lens_expanded = query_lens.unsqueeze(-1).unsqueeze(-1) # [B, 1, 1] | |
| k_lens_expanded = key_lens.unsqueeze(-1).unsqueeze(-1) # [B, 1, 1] | |
| query_ids_multiple = q_lens_expanded / (q_lens_expanded - 1) | |
| key_ids_multiple = k_lens_expanded / (k_lens_expanded - 1) | |
| q_emb = self.pm_freqs * query_ids_multiple # [B, q_len_max, d] | |
| k_emb = self.pm_freqs * key_ids_multiple # [B, k_len_max, d] | |
| q_emb = q_emb / q_lens_expanded * self.progress_scale | |
| k_emb = k_emb / k_lens_expanded * self.progress_scale | |
| q_cos = q_emb.cos().unsqueeze(1) # [B, 1, q_len_max, d] # 1 is for nhead | |
| q_sin = q_emb.sin().unsqueeze(1) | |
| k_cos = k_emb.cos().unsqueeze(1) | |
| k_sin = k_emb.sin().unsqueeze(1) | |
| self.pm_sinu = {"q": {"cos": q_cos, "sin": q_sin}, "k": {"cos": k_cos, "sin": k_sin}} | |
| else: | |
| self.pm_sinu = {"q": None, "k": None} | |
| output = {"input": output, "pm_sinu": self.pm_sinu, "sinu": self.sinu, "args": self.args} | |
| if past != None: | |
| all_present = [] | |
| if self.training and getattr(self.args, "attention_alignment_loss", 0): | |
| all_attn_weights = [] | |
| for i, mod in enumerate(self.layers): | |
| output = mod(output, memory, tgt_mask=tgt_mask, | |
| memory_mask=memory_mask, | |
| tgt_key_padding_mask=tgt_key_padding_mask, | |
| memory_key_padding_mask=memory_key_padding_mask, | |
| past=past[i] if past != None else None | |
| # tgt_is_causal=tgt_is_causal, | |
| # memory_is_causal=memory_is_causal | |
| ) | |
| if past != None: | |
| output, cur_present = output | |
| all_present.append(cur_present) | |
| if isinstance(output, dict): | |
| current_attn_weights = output["attention_weights"] | |
| all_attn_weights.append(current_attn_weights) | |
| output = output["x"] | |
| if self.sinu is not None or self.pm_sinu is not None: | |
| output = {"input": output, "pm_sinu": self.pm_sinu, "sinu": self.sinu, "args": self.args} | |
| if self.pm_sinu is not None or self.sinu is not None: | |
| output = output["input"] | |
| if self.norm is not None: | |
| output = self.norm(output) | |
| if self.training and getattr(self.args, "attention_alignment_loss", 0): | |
| assert len(all_attn_weights) == self.num_layers, f"{len(all_attn_weights)=}, {self.num_layers=}" | |
| output = {"output": output, "attention_weights": all_attn_weights} | |
| if past != None: | |
| all_present = torch.stack(all_present, dim=0) | |
| output = [output, all_present] | |
| else: | |
| output = [output, None] | |
| return output |