Spaces:
Running
on
Zero
Running
on
Zero
| import json | |
| import time | |
| import copy | |
| import torch | |
| import random | |
| import string | |
| import logging | |
| import os.path | |
| import numpy as np | |
| from tqdm import tqdm | |
| from funasr_detach.register import tables | |
| from funasr_detach.utils.load_utils import load_bytes | |
| from funasr_detach.download.file import download_from_url | |
| from funasr_detach.download.download_from_hub import download_model | |
| from funasr_detach.utils.vad_utils import slice_padding_audio_samples | |
| from funasr_detach.train_utils.set_all_random_seed import set_all_random_seed | |
| from funasr_detach.train_utils.load_pretrained_model import load_pretrained_model | |
| from funasr_detach.utils.load_utils import load_audio_text_image_video | |
| from funasr_detach.utils.timestamp_tools import timestamp_sentence | |
| from funasr_detach.models.campplus.utils import sv_chunk, postprocess, distribute_spk | |
| try: | |
| from funasr_detach.models.campplus.cluster_backend import ClusterBackend | |
| except: | |
| print("If you want to use the speaker diarization, please `pip install hdbscan`") | |
| def prepare_data_iterator(data_in, input_len=None, data_type=None, key=None): | |
| """ | |
| :param input: | |
| :param input_len: | |
| :param data_type: | |
| :param frontend: | |
| :return: | |
| """ | |
| data_list = [] | |
| key_list = [] | |
| filelist = [".scp", ".txt", ".json", ".jsonl"] | |
| chars = string.ascii_letters + string.digits | |
| if isinstance(data_in, str) and data_in.startswith("http"): # url | |
| data_in = download_from_url(data_in) | |
| if isinstance(data_in, str) and os.path.exists( | |
| data_in | |
| ): # wav_path; filelist: wav.scp, file.jsonl;text.txt; | |
| _, file_extension = os.path.splitext(data_in) | |
| file_extension = file_extension.lower() | |
| if file_extension in filelist: # filelist: wav.scp, file.jsonl;text.txt; | |
| with open(data_in, encoding="utf-8") as fin: | |
| for line in fin: | |
| key = "rand_key_" + "".join(random.choice(chars) for _ in range(13)) | |
| if data_in.endswith( | |
| ".jsonl" | |
| ): # file.jsonl: json.dumps({"source": data}) | |
| lines = json.loads(line.strip()) | |
| data = lines["source"] | |
| key = data["key"] if "key" in data else key | |
| else: # filelist, wav.scp, text.txt: id \t data or data | |
| lines = line.strip().split(maxsplit=1) | |
| data = lines[1] if len(lines) > 1 else lines[0] | |
| key = lines[0] if len(lines) > 1 else key | |
| data_list.append(data) | |
| key_list.append(key) | |
| else: | |
| key = "rand_key_" + "".join(random.choice(chars) for _ in range(13)) | |
| data_list = [data_in] | |
| key_list = [key] | |
| elif isinstance(data_in, (list, tuple)): | |
| if data_type is not None and isinstance( | |
| data_type, (list, tuple) | |
| ): # mutiple inputs | |
| data_list_tmp = [] | |
| for data_in_i, data_type_i in zip(data_in, data_type): | |
| key_list, data_list_i = prepare_data_iterator( | |
| data_in=data_in_i, data_type=data_type_i | |
| ) | |
| data_list_tmp.append(data_list_i) | |
| data_list = [] | |
| for item in zip(*data_list_tmp): | |
| data_list.append(item) | |
| else: | |
| # [audio sample point, fbank, text] | |
| data_list = data_in | |
| key_list = [ | |
| "rand_key_" + "".join(random.choice(chars) for _ in range(13)) | |
| for _ in range(len(data_in)) | |
| ] | |
| else: # raw text; audio sample point, fbank; bytes | |
| if isinstance(data_in, bytes): # audio bytes | |
| data_in = load_bytes(data_in) | |
| if key is None: | |
| key = "rand_key_" + "".join(random.choice(chars) for _ in range(13)) | |
| data_list = [data_in] | |
| key_list = [key] | |
| return key_list, data_list | |
| class AutoModel: | |
| def __init__(self, **kwargs): | |
| if not kwargs.get("disable_log", False): | |
| tables.print() | |
| model, kwargs = self.build_model(**kwargs) | |
| # if vad_model is not None, build vad model else None | |
| vad_model = kwargs.get("vad_model", None) | |
| vad_kwargs = kwargs.get("vad_model_revision", None) | |
| if vad_model is not None: | |
| logging.info("Building VAD model.") | |
| vad_kwargs = { | |
| "model": vad_model, | |
| "model_revision": vad_kwargs, | |
| "device": kwargs["device"], | |
| } | |
| vad_model, vad_kwargs = self.build_model(**vad_kwargs) | |
| # if punc_model is not None, build punc model else None | |
| punc_model = kwargs.get("punc_model", None) | |
| punc_kwargs = kwargs.get("punc_model_revision", None) | |
| if punc_model is not None: | |
| logging.info("Building punc model.") | |
| punc_kwargs = { | |
| "model": punc_model, | |
| "model_revision": punc_kwargs, | |
| "device": kwargs["device"], | |
| } | |
| punc_model, punc_kwargs = self.build_model(**punc_kwargs) | |
| # if spk_model is not None, build spk model else None | |
| spk_model = kwargs.get("spk_model", None) | |
| spk_kwargs = kwargs.get("spk_model_revision", None) | |
| if spk_model is not None: | |
| logging.info("Building SPK model.") | |
| spk_kwargs = { | |
| "model": spk_model, | |
| "model_revision": spk_kwargs, | |
| "device": kwargs["device"], | |
| } | |
| spk_model, spk_kwargs = self.build_model(**spk_kwargs) | |
| self.cb_model = ClusterBackend().to(kwargs["device"]) | |
| spk_mode = kwargs.get("spk_mode", "punc_segment") | |
| if spk_mode not in ["default", "vad_segment", "punc_segment"]: | |
| logging.error( | |
| "spk_mode should be one of default, vad_segment and punc_segment." | |
| ) | |
| self.spk_mode = spk_mode | |
| self.kwargs = kwargs | |
| self.model = model | |
| self.vad_model = vad_model | |
| self.vad_kwargs = vad_kwargs | |
| self.punc_model = punc_model | |
| self.punc_kwargs = punc_kwargs | |
| self.spk_model = spk_model | |
| self.spk_kwargs = spk_kwargs | |
| self.model_path = kwargs.get("model_path") | |
| def build_model(self, **kwargs): | |
| assert "model" in kwargs | |
| if "model_conf" not in kwargs: | |
| logging.info( | |
| "download models from model hub: {}".format( | |
| kwargs.get("model_hub", "ms") | |
| ) | |
| ) | |
| kwargs = download_model(**kwargs) | |
| set_all_random_seed(kwargs.get("seed", 0)) | |
| device = kwargs.get("device", "cuda") | |
| if not torch.cuda.is_available() or kwargs.get("ngpu", 1) == 0: | |
| device = "cpu" | |
| kwargs["batch_size"] = 1 | |
| kwargs["device"] = device | |
| if kwargs.get("ncpu", None): | |
| torch.set_num_threads(kwargs.get("ncpu")) | |
| # build tokenizer | |
| tokenizer = kwargs.get("tokenizer", None) | |
| if tokenizer is not None: | |
| tokenizer_class = tables.tokenizer_classes.get(tokenizer) | |
| tokenizer = tokenizer_class(**kwargs["tokenizer_conf"]) | |
| kwargs["tokenizer"] = tokenizer | |
| kwargs["token_list"] = tokenizer.token_list | |
| vocab_size = len(tokenizer.token_list) | |
| else: | |
| vocab_size = -1 | |
| # build frontend | |
| frontend = kwargs.get("frontend", None) | |
| if frontend is not None: | |
| frontend_class = tables.frontend_classes.get(frontend) | |
| frontend = frontend_class(**kwargs["frontend_conf"]) | |
| kwargs["frontend"] = frontend | |
| kwargs["input_size"] = frontend.output_size() | |
| # build model | |
| model_class = tables.model_classes.get(kwargs["model"]) | |
| model = model_class(**kwargs, **kwargs["model_conf"], vocab_size=vocab_size) | |
| model.to(device) | |
| # init_param | |
| init_param = kwargs.get("init_param", None) | |
| if init_param is not None: | |
| logging.info(f"Loading pretrained params from {init_param}") | |
| load_pretrained_model( | |
| model=model, | |
| path=init_param, | |
| ignore_init_mismatch=kwargs.get("ignore_init_mismatch", False), | |
| oss_bucket=kwargs.get("oss_bucket", None), | |
| scope_map=kwargs.get("scope_map", None), | |
| excludes=kwargs.get("excludes", None), | |
| ) | |
| return model, kwargs | |
| def __call__(self, *args, **cfg): | |
| kwargs = self.kwargs | |
| kwargs.update(cfg) | |
| res = self.model(*args, kwargs) | |
| return res | |
| def generate(self, input, input_len=None, **cfg): | |
| if self.vad_model is None: | |
| return self.inference(input, input_len=input_len, **cfg) | |
| else: | |
| return self.inference_with_vad(input, input_len=input_len, **cfg) | |
| def inference( | |
| self, input, input_len=None, model=None, kwargs=None, key=None, **cfg | |
| ): | |
| kwargs = self.kwargs if kwargs is None else kwargs | |
| kwargs.update(cfg) | |
| model = self.model if model is None else model | |
| model = model.cuda() | |
| model.eval() | |
| batch_size = kwargs.get("batch_size", 1) | |
| # if kwargs.get("device", "cpu") == "cpu": | |
| # batch_size = 1 | |
| key_list, data_list = prepare_data_iterator( | |
| input, input_len=input_len, data_type=kwargs.get("data_type", None), key=key | |
| ) | |
| speed_stats = {} | |
| asr_result_list = [] | |
| num_samples = len(data_list) | |
| disable_pbar = kwargs.get("disable_pbar", False) | |
| pbar = ( | |
| tqdm(colour="blue", total=num_samples, dynamic_ncols=True) | |
| if not disable_pbar | |
| else None | |
| ) | |
| time_speech_total = 0.0 | |
| time_escape_total = 0.0 | |
| for beg_idx in range(0, num_samples, batch_size): | |
| end_idx = min(num_samples, beg_idx + batch_size) | |
| data_batch = data_list[beg_idx:end_idx] | |
| key_batch = key_list[beg_idx:end_idx] | |
| batch = {"data_in": data_batch, "key": key_batch} | |
| if (end_idx - beg_idx) == 1 and kwargs.get( | |
| "data_type", None | |
| ) == "fbank": # fbank | |
| batch["data_in"] = data_batch[0] | |
| batch["data_lengths"] = input_len | |
| time1 = time.perf_counter() | |
| with torch.no_grad(): | |
| results, meta_data = model.inference(**batch, **kwargs) | |
| time2 = time.perf_counter() | |
| asr_result_list.extend(results) | |
| # batch_data_time = time_per_frame_s * data_batch_i["speech_lengths"].sum().item() | |
| batch_data_time = meta_data.get("batch_data_time", -1) | |
| time_escape = time2 - time1 | |
| speed_stats["load_data"] = meta_data.get("load_data", 0.0) | |
| speed_stats["extract_feat"] = meta_data.get("extract_feat", 0.0) | |
| speed_stats["forward"] = f"{time_escape:0.3f}" | |
| speed_stats["batch_size"] = f"{len(results)}" | |
| speed_stats["time_cost"] = f"{(time_escape)}" | |
| speed_stats["rtf"] = f"{(time_escape) / batch_data_time:0.3f}" | |
| description = f"{speed_stats}, " | |
| if pbar: | |
| pbar.update(1) | |
| pbar.set_description(description) | |
| time_speech_total += batch_data_time | |
| time_escape_total += time_escape | |
| if pbar: | |
| # pbar.update(1) | |
| pbar.set_description(f"rtf_avg: {time_escape_total/time_speech_total:0.3f}") | |
| torch.cuda.empty_cache() | |
| return asr_result_list | |
| def inference_with_vad(self, input, input_len=None, **cfg): | |
| # step.1: compute the vad model | |
| self.vad_kwargs.update(cfg) | |
| beg_vad = time.time() | |
| res = self.inference( | |
| input, | |
| input_len=input_len, | |
| model=self.vad_model, | |
| kwargs=self.vad_kwargs, | |
| **cfg, | |
| ) | |
| end_vad = time.time() | |
| print(f"time cost vad: {end_vad - beg_vad:0.3f}") | |
| # step.2 compute asr model | |
| model = self.model | |
| kwargs = self.kwargs | |
| kwargs.update(cfg) | |
| batch_size = int(kwargs.get("batch_size_s", 300)) * 1000 | |
| batch_size_threshold_ms = int(kwargs.get("batch_size_threshold_s", 60)) * 1000 | |
| kwargs["batch_size"] = batch_size | |
| key_list, data_list = prepare_data_iterator( | |
| input, input_len=input_len, data_type=kwargs.get("data_type", None) | |
| ) | |
| results_ret_list = [] | |
| time_speech_total_all_samples = 1e-6 | |
| beg_total = time.time() | |
| pbar_total = tqdm(colour="red", total=len(res), dynamic_ncols=True) | |
| for i in range(len(res)): | |
| key = res[i]["key"] | |
| vadsegments = res[i]["value"] | |
| input_i = data_list[i] | |
| speech = load_audio_text_image_video( | |
| input_i, fs=kwargs["frontend"].fs, audio_fs=kwargs.get("fs", 16000) | |
| ) | |
| speech_lengths = len(speech) | |
| n = len(vadsegments) | |
| data_with_index = [(vadsegments[i], i) for i in range(n)] | |
| sorted_data = sorted(data_with_index, key=lambda x: x[0][1] - x[0][0]) | |
| results_sorted = [] | |
| if not len(sorted_data): | |
| logging.info("decoding, utt: {}, empty speech".format(key)) | |
| continue | |
| if len(sorted_data) > 0 and len(sorted_data[0]) > 0: | |
| batch_size = max( | |
| batch_size, sorted_data[0][0][1] - sorted_data[0][0][0] | |
| ) | |
| batch_size_ms_cum = 0 | |
| beg_idx = 0 | |
| beg_asr_total = time.time() | |
| time_speech_total_per_sample = speech_lengths / 16000 | |
| time_speech_total_all_samples += time_speech_total_per_sample | |
| all_segments = [] | |
| for j, _ in enumerate(range(0, n)): | |
| # pbar_sample.update(1) | |
| batch_size_ms_cum += sorted_data[j][0][1] - sorted_data[j][0][0] | |
| if ( | |
| j < n - 1 | |
| and ( | |
| batch_size_ms_cum | |
| + sorted_data[j + 1][0][1] | |
| - sorted_data[j + 1][0][0] | |
| ) | |
| < batch_size | |
| and (sorted_data[j + 1][0][1] - sorted_data[j + 1][0][0]) | |
| < batch_size_threshold_ms | |
| ): | |
| continue | |
| batch_size_ms_cum = 0 | |
| end_idx = j + 1 | |
| speech_j, speech_lengths_j = slice_padding_audio_samples( | |
| speech, speech_lengths, sorted_data[beg_idx:end_idx] | |
| ) | |
| results = self.inference( | |
| speech_j, | |
| input_len=None, | |
| model=model, | |
| kwargs=kwargs, | |
| disable_pbar=True, | |
| **cfg, | |
| ) | |
| if self.spk_model is not None: | |
| # compose vad segments: [[start_time_sec, end_time_sec, speech], [...]] | |
| for _b in range(len(speech_j)): | |
| vad_segments = [ | |
| [ | |
| sorted_data[beg_idx:end_idx][_b][0][0] / 1000.0, | |
| sorted_data[beg_idx:end_idx][_b][0][1] / 1000.0, | |
| np.array(speech_j[_b]), | |
| ] | |
| ] | |
| segments = sv_chunk(vad_segments) | |
| all_segments.extend(segments) | |
| speech_b = [i[2] for i in segments] | |
| spk_res = self.inference( | |
| speech_b, | |
| input_len=None, | |
| model=self.spk_model, | |
| kwargs=kwargs, | |
| disable_pbar=True, | |
| **cfg, | |
| ) | |
| results[_b]["spk_embedding"] = spk_res[0]["spk_embedding"] | |
| beg_idx = end_idx | |
| if len(results) < 1: | |
| continue | |
| results_sorted.extend(results) | |
| restored_data = [0] * n | |
| for j in range(n): | |
| index = sorted_data[j][1] | |
| restored_data[index] = results_sorted[j] | |
| result = {} | |
| # results combine for texts, timestamps, speaker embeddings and others | |
| # TODO: rewrite for clean code | |
| for j in range(n): | |
| for k, v in restored_data[j].items(): | |
| if k.startswith("timestamp"): | |
| if k not in result: | |
| result[k] = [] | |
| for t in restored_data[j][k]: | |
| t[0] += vadsegments[j][0] | |
| t[1] += vadsegments[j][0] | |
| result[k].extend(restored_data[j][k]) | |
| elif k == "spk_embedding": | |
| if k not in result: | |
| result[k] = restored_data[j][k] | |
| else: | |
| result[k] = torch.cat( | |
| [result[k], restored_data[j][k]], dim=0 | |
| ) | |
| elif "text" in k: | |
| if k not in result: | |
| result[k] = restored_data[j][k] | |
| else: | |
| result[k] += " " + restored_data[j][k] | |
| else: | |
| if k not in result: | |
| result[k] = restored_data[j][k] | |
| else: | |
| result[k] += restored_data[j][k] | |
| return_raw_text = kwargs.get("return_raw_text", False) | |
| # step.3 compute punc model | |
| if self.punc_model is not None: | |
| self.punc_kwargs.update(cfg) | |
| punc_res = self.inference( | |
| result["text"], | |
| model=self.punc_model, | |
| kwargs=self.punc_kwargs, | |
| disable_pbar=True, | |
| **cfg, | |
| ) | |
| raw_text = copy.copy(result["text"]) | |
| if return_raw_text: | |
| result["raw_text"] = raw_text | |
| result["text"] = punc_res[0]["text"] | |
| else: | |
| raw_text = None | |
| # speaker embedding cluster after resorted | |
| if self.spk_model is not None and kwargs.get("return_spk_res", True): | |
| if raw_text is None: | |
| logging.error("Missing punc_model, which is required by spk_model.") | |
| all_segments = sorted(all_segments, key=lambda x: x[0]) | |
| spk_embedding = result["spk_embedding"] | |
| labels = self.cb_model( | |
| spk_embedding.cpu(), oracle_num=kwargs.get("preset_spk_num", None) | |
| ) | |
| # del result['spk_embedding'] | |
| sv_output = postprocess(all_segments, None, labels, spk_embedding.cpu()) | |
| if self.spk_mode == "vad_segment": # recover sentence_list | |
| sentence_list = [] | |
| for res, vadsegment in zip(restored_data, vadsegments): | |
| if "timestamp" not in res: | |
| logging.error( | |
| "Only 'iic/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch' \ | |
| and 'iic/speech_seaco_paraformer_large_asr_nat-zh-cn-16k-common-vocab8404-pytorch'\ | |
| can predict timestamp, and speaker diarization relies on timestamps." | |
| ) | |
| sentence_list.append( | |
| { | |
| "start": vadsegment[0], | |
| "end": vadsegment[1], | |
| "sentence": res["text"], | |
| "timestamp": res["timestamp"], | |
| } | |
| ) | |
| elif self.spk_mode == "punc_segment": | |
| if "timestamp" not in result: | |
| logging.error( | |
| "Only 'iic/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch' \ | |
| and 'iic/speech_seaco_paraformer_large_asr_nat-zh-cn-16k-common-vocab8404-pytorch'\ | |
| can predict timestamp, and speaker diarization relies on timestamps." | |
| ) | |
| sentence_list = timestamp_sentence( | |
| punc_res[0]["punc_array"], | |
| result["timestamp"], | |
| raw_text, | |
| return_raw_text=return_raw_text, | |
| ) | |
| distribute_spk(sentence_list, sv_output) | |
| result["sentence_info"] = sentence_list | |
| elif kwargs.get("sentence_timestamp", False): | |
| sentence_list = timestamp_sentence( | |
| punc_res[0]["punc_array"], | |
| result["timestamp"], | |
| raw_text, | |
| return_raw_text=return_raw_text, | |
| ) | |
| result["sentence_info"] = sentence_list | |
| if "spk_embedding" in result: | |
| del result["spk_embedding"] | |
| result["key"] = key | |
| results_ret_list.append(result) | |
| end_asr_total = time.time() | |
| time_escape_total_per_sample = end_asr_total - beg_asr_total | |
| pbar_total.update(1) | |
| pbar_total.set_description( | |
| f"rtf_avg: {time_escape_total_per_sample / time_speech_total_per_sample:0.3f}, " | |
| f"time_speech: {time_speech_total_per_sample: 0.3f}, " | |
| f"time_escape: {time_escape_total_per_sample:0.3f}" | |
| ) | |
| return results_ret_list | |
| def infer_encoder( | |
| self, input, input_len=None, model=None, kwargs=None, key=None, **cfg | |
| ): | |
| kwargs = self.kwargs if kwargs is None else kwargs | |
| kwargs.update(cfg) | |
| model = self.model if model is None else model | |
| model = model.cuda() | |
| model.eval() | |
| batch_size = kwargs.get("batch_size", 1) | |
| key_list, data_list = prepare_data_iterator( | |
| input, input_len=input_len, data_type=kwargs.get("data_type", None), key=key | |
| ) | |
| asr_result_list = [] | |
| num_samples = len(data_list) | |
| for beg_idx in range(0, num_samples, batch_size): | |
| end_idx = min(num_samples, beg_idx + batch_size) | |
| data_batch = data_list[beg_idx:end_idx] | |
| key_batch = key_list[beg_idx:end_idx] | |
| batch = {"data_in": data_batch, "key": key_batch} | |
| if (end_idx - beg_idx) == 1 and kwargs.get( | |
| "data_type", None | |
| ) == "fbank": # fbank | |
| batch["data_in"] = data_batch[0] | |
| batch["data_lengths"] = input_len | |
| with torch.no_grad(): | |
| results, meta_data, cache = model.infer_encoder(**batch, **kwargs) | |
| asr_result_list.extend(results) | |
| torch.cuda.empty_cache() | |
| return asr_result_list, cache | |