Spaces:
Runtime error
Runtime error
| #! /usr/bin/env python | |
| # -*- coding: utf-8 -*- | |
| # Copyright 2023 Imperial College London (Pingchuan Ma) | |
| # Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) | |
| import os | |
| import datetime | |
| import subprocess | |
| import gradio as gr | |
| from pipelines.pipeline import InferencePipeline | |
| pipelines = { | |
| "VSR(mediapipe)": InferencePipeline("./configs/LRS3_V_WER19.1.ini", device="cpu", face_track=True, detector="mediapipe"), | |
| "ASR": InferencePipeline("./configs/LRS3_A_WER1.0.ini", device="cpu", face_track=True, detector="mediapipe"), | |
| "AVSR(mediapipe)": InferencePipeline("./configs/LRS3_AV_WER0.9.ini", device="cpu", face_track=True, detector="mediapipe") | |
| } | |
| print("Step 0. Model has been loaded.") | |
| def fn(pipeline_type, filename): | |
| print("Step 0. Video has been uploaded.") | |
| os.system(command_string) | |
| selected_pipeline_instance = pipelines[pipeline_type] | |
| print("Step 1. Video has been converted.") | |
| landmarks = selected_pipeline_instance.process_landmarks(filename, landmarks_filename=None) | |
| print("Step 2. Landmarks have been detected.") | |
| data = selected_pipeline_instance.dataloader.load_data(filename, landmarks) | |
| print("Step 3. Data has been preprocessed.") | |
| transcript = selected_pipeline_instance.model.infer(data) | |
| print("Step 4. Inference has been done.") | |
| print(f"transcript: {transcript}") | |
| return transcript | |
| demo = gr.Blocks() | |
| with demo: | |
| gr.HTML( | |
| """ | |
| <div style="text-align: center; max-width: 700px; margin: 0 auto;"> | |
| <div | |
| style=" | |
| display: inline-flex; | |
| align-items: center; | |
| gap: 0.8rem; | |
| font-size: 1.75rem; | |
| " | |
| > | |
| <h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;"> | |
| Auto-AVSR: Audio-Visual Speech Recognition with Automatic Labels | |
| </h1> | |
| </div> | |
| <p style="margin-bottom: 10px; font-size: 94%"> | |
| </p> | |
| </div> | |
| """ | |
| ) | |
| dropdown_list = gr.inputs.Dropdown(["ASR", "VSR(mediapipe)", "AVSR(mediapipe)"], label="model") | |
| video_file = gr.Video(label="INPUT VIDEO", include_audio=True) | |
| text = gr.Textbox(label="PREDICTION") | |
| btn = gr.Button("Submit").style(full_width=True) | |
| btn.click(fn, inputs=[dropdown_list, video_file], outputs=text) | |
| with gr.Accordion("Additional information", open=False): | |
| gr.HTML( | |
| """ | |
| <div class="acknowledgments"> | |
| <p> We used retinaface for training, but for the demo we used mediapipe </p> | |
| <p> We share this demo only for non-commercial purposes. </p> | |
| </div> | |
| """ | |
| ) | |
| demo.launch(share=True) |