Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,72 +1,103 @@
|
|
| 1 |
-
# app.py - Complete Chatbot with Fine-tuning and Deployment
|
| 2 |
import gradio as gr
|
| 3 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline, Trainer, TrainingArguments
|
| 4 |
from datasets import load_dataset, Dataset
|
| 5 |
import torch
|
| 6 |
import pandas as pd
|
| 7 |
-
from huggingface_hub import notebook_login
|
|
|
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
DATASET_NAME = "AmazonQA"
|
| 12 |
FINETUNED_MODEL_NAME = "MujtabaShopifyChatbot"
|
| 13 |
-
HF_TOKEN = "your_huggingface_token"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
-
# --- Step 1: Load and Prepare Dataset ---
|
| 16 |
def load_and_preprocess_data():
|
| 17 |
-
print("Loading
|
| 18 |
dataset = load_dataset(DATASET_NAME)
|
|
|
|
| 19 |
|
| 20 |
-
# Convert to pandas for easier processing
|
| 21 |
df = pd.DataFrame(dataset['train'])
|
| 22 |
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
df = df[['question', 'answer']].dropna()
|
| 25 |
-
df = df[:5000]
|
| 26 |
|
| 27 |
-
|
| 28 |
-
processed_dataset = Dataset.from_pandas(df)
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
return
|
| 33 |
|
| 34 |
-
# --- Step 2: Tokenization ---
|
| 35 |
def tokenize_data(dataset):
|
| 36 |
-
print("Tokenizing data
|
| 37 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 38 |
|
| 39 |
def preprocess_function(examples):
|
| 40 |
inputs = [f"question: {q} answer:" for q in examples["question"]]
|
| 41 |
-
targets = examples["answer"]
|
| 42 |
|
| 43 |
-
model_inputs = tokenizer(
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
model_inputs["labels"] = labels["input_ids"]
|
| 47 |
return model_inputs
|
| 48 |
|
| 49 |
-
|
| 50 |
-
return tokenized_dataset
|
| 51 |
|
| 52 |
-
# --- Step 3: Fine-tuning ---
|
| 53 |
def fine_tune_model(tokenized_dataset):
|
| 54 |
-
print("
|
|
|
|
| 55 |
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
|
| 56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
training_args = TrainingArguments(
|
| 58 |
output_dir="./results",
|
| 59 |
-
|
| 60 |
-
learning_rate=
|
| 61 |
-
per_device_train_batch_size=
|
| 62 |
-
per_device_eval_batch_size=
|
| 63 |
num_train_epochs=3,
|
| 64 |
weight_decay=0.01,
|
| 65 |
save_total_limit=3,
|
| 66 |
fp16=torch.cuda.is_available(),
|
| 67 |
-
push_to_hub=
|
| 68 |
-
|
| 69 |
-
|
|
|
|
|
|
|
| 70 |
)
|
| 71 |
|
| 72 |
trainer = Trainer(
|
|
@@ -74,70 +105,77 @@ def fine_tune_model(tokenized_dataset):
|
|
| 74 |
args=training_args,
|
| 75 |
train_dataset=tokenized_dataset["train"],
|
| 76 |
eval_dataset=tokenized_dataset["test"],
|
|
|
|
|
|
|
| 77 |
)
|
| 78 |
|
| 79 |
trainer.train()
|
| 80 |
-
|
|
|
|
|
|
|
| 81 |
return model
|
| 82 |
|
| 83 |
-
# --- Step 4: Chatbot Interface ---
|
| 84 |
def initialize_chatbot():
|
| 85 |
-
|
|
|
|
| 86 |
try:
|
| 87 |
-
# Try loading fine-tuned model first
|
| 88 |
model = AutoModelForSeq2SeqLM.from_pretrained(FINETUNED_MODEL_NAME)
|
| 89 |
tokenizer = AutoTokenizer.from_pretrained(FINETUNED_MODEL_NAME)
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
return chatbot_pipe
|
| 97 |
|
| 98 |
def generate_response(message, history):
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
# Generate response
|
| 103 |
-
response = chatbot_pipe(input_text, max_length=128, do_sample=True)[0]['generated_text']
|
| 104 |
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
response =
|
| 108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
|
| 110 |
-
# --- Step 5: Deployment ---
|
| 111 |
def deploy_chatbot():
|
| 112 |
-
print("Launching chatbot interface
|
| 113 |
demo = gr.ChatInterface(
|
| 114 |
fn=generate_response,
|
| 115 |
-
title="Mujtaba's Shopify
|
| 116 |
-
description="Ask
|
| 117 |
examples=[
|
| 118 |
-
"
|
| 119 |
-
"
|
| 120 |
-
"Do you
|
| 121 |
],
|
| 122 |
-
theme="soft"
|
|
|
|
| 123 |
)
|
| 124 |
return demo
|
| 125 |
|
| 126 |
-
# --- Main Execution ---
|
| 127 |
if __name__ == "__main__":
|
| 128 |
-
# Login to Hugging Face Hub
|
| 129 |
notebook_login()
|
| 130 |
-
|
| 131 |
-
# Dataset preparation
|
| 132 |
dataset = load_and_preprocess_data()
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
# Fine-tuning (uncomment to run)
|
| 136 |
-
# fine_tune_model(tokenized_dataset)
|
| 137 |
|
| 138 |
-
|
| 139 |
-
chatbot_pipe = initialize_chatbot()
|
| 140 |
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
demo.launch(share=True)
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline, Trainer, TrainingArguments
|
| 3 |
from datasets import load_dataset, Dataset
|
| 4 |
import torch
|
| 5 |
import pandas as pd
|
| 6 |
+
from huggingface_hub import notebook_login
|
| 7 |
+
from transformers import DataCollatorForSeq2Seq
|
| 8 |
|
| 9 |
+
MODEL_NAME = "microsoft/DialoGPT-small"
|
| 10 |
+
DATASET_NAME = "embedding-data/amazon-QA"
|
|
|
|
| 11 |
FINETUNED_MODEL_NAME = "MujtabaShopifyChatbot"
|
| 12 |
+
HF_TOKEN = "your_huggingface_token"
|
| 13 |
+
|
| 14 |
+
chatbot_pipe = None
|
| 15 |
+
|
| 16 |
+
def show_dataset_head(dataset, num_rows=5):
|
| 17 |
+
print("Displaying dataset preview ", dataset)
|
| 18 |
+
if isinstance(dataset, dict):
|
| 19 |
+
for split in dataset.keys():
|
| 20 |
+
print("Current split ", split)
|
| 21 |
+
df = pd.DataFrame(dataset[split][:num_rows])
|
| 22 |
+
cols = [col for col in ['query', 'pos', 'question', 'answer'] if col in df.columns]
|
| 23 |
+
if cols:
|
| 24 |
+
print("Dataset columns ", cols)
|
| 25 |
|
|
|
|
| 26 |
def load_and_preprocess_data():
|
| 27 |
+
print("Loading dataset from ", DATASET_NAME)
|
| 28 |
dataset = load_dataset(DATASET_NAME)
|
| 29 |
+
show_dataset_head(dataset)
|
| 30 |
|
|
|
|
| 31 |
df = pd.DataFrame(dataset['train'])
|
| 32 |
|
| 33 |
+
if 'query' in df.columns and 'pos' in df.columns:
|
| 34 |
+
df = df.rename(columns={'query': 'question', 'pos': 'answer'})
|
| 35 |
+
elif 'question' not in df.columns or 'answer' not in df.columns:
|
| 36 |
+
df = df.rename(columns={df.columns[0]: 'question', df.columns[1]: 'answer'})
|
| 37 |
+
|
| 38 |
df = df[['question', 'answer']].dropna()
|
| 39 |
+
df = df[:5000]
|
| 40 |
|
| 41 |
+
df['answer'] = df['answer'].astype(str).str.replace(r'\[\^|\].*', '', regex=True)
|
|
|
|
| 42 |
|
| 43 |
+
processed_dataset = Dataset.from_pandas(df)
|
| 44 |
+
show_dataset_head(processed_dataset)
|
| 45 |
+
return processed_dataset.train_test_split(test_size=0.1)
|
| 46 |
|
|
|
|
| 47 |
def tokenize_data(dataset):
|
| 48 |
+
print("Tokenizing data with model ", MODEL_NAME)
|
| 49 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 50 |
|
| 51 |
def preprocess_function(examples):
|
| 52 |
inputs = [f"question: {q} answer:" for q in examples["question"]]
|
| 53 |
+
targets = [str(a) for a in examples["answer"]]
|
| 54 |
|
| 55 |
+
model_inputs = tokenizer(
|
| 56 |
+
inputs,
|
| 57 |
+
max_length=128,
|
| 58 |
+
truncation=True,
|
| 59 |
+
padding='max_length'
|
| 60 |
+
)
|
| 61 |
+
labels = tokenizer(
|
| 62 |
+
targets,
|
| 63 |
+
max_length=128,
|
| 64 |
+
truncation=True,
|
| 65 |
+
padding='max_length'
|
| 66 |
+
)
|
| 67 |
|
| 68 |
model_inputs["labels"] = labels["input_ids"]
|
| 69 |
return model_inputs
|
| 70 |
|
| 71 |
+
return dataset.map(preprocess_function, batched=True)
|
|
|
|
| 72 |
|
|
|
|
| 73 |
def fine_tune_model(tokenized_dataset):
|
| 74 |
+
print("Starting fine-tuning process")
|
| 75 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 76 |
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
|
| 77 |
|
| 78 |
+
data_collator = DataCollatorForSeq2Seq(
|
| 79 |
+
tokenizer,
|
| 80 |
+
model=model,
|
| 81 |
+
padding='longest',
|
| 82 |
+
max_length=128,
|
| 83 |
+
pad_to_multiple_of=8
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
training_args = TrainingArguments(
|
| 87 |
output_dir="./results",
|
| 88 |
+
eval_strategy="epoch",
|
| 89 |
+
learning_rate=5e-5,
|
| 90 |
+
per_device_train_batch_size=4,
|
| 91 |
+
per_device_eval_batch_size=4,
|
| 92 |
num_train_epochs=3,
|
| 93 |
weight_decay=0.01,
|
| 94 |
save_total_limit=3,
|
| 95 |
fp16=torch.cuda.is_available(),
|
| 96 |
+
push_to_hub=False,
|
| 97 |
+
report_to="none",
|
| 98 |
+
logging_steps=100,
|
| 99 |
+
save_steps=500,
|
| 100 |
+
gradient_accumulation_steps=1
|
| 101 |
)
|
| 102 |
|
| 103 |
trainer = Trainer(
|
|
|
|
| 105 |
args=training_args,
|
| 106 |
train_dataset=tokenized_dataset["train"],
|
| 107 |
eval_dataset=tokenized_dataset["test"],
|
| 108 |
+
data_collator=data_collator,
|
| 109 |
+
tokenizer=tokenizer
|
| 110 |
)
|
| 111 |
|
| 112 |
trainer.train()
|
| 113 |
+
print("Training completed, saving model")
|
| 114 |
+
model.save_pretrained(FINETUNED_MODEL_NAME)
|
| 115 |
+
tokenizer.save_pretrained(FINETUNED_MODEL_NAME)
|
| 116 |
return model
|
| 117 |
|
|
|
|
| 118 |
def initialize_chatbot():
|
| 119 |
+
global chatbot_pipe
|
| 120 |
+
print("Initializing chatbot with model ", FINETUNED_MODEL_NAME)
|
| 121 |
try:
|
|
|
|
| 122 |
model = AutoModelForSeq2SeqLM.from_pretrained(FINETUNED_MODEL_NAME)
|
| 123 |
tokenizer = AutoTokenizer.from_pretrained(FINETUNED_MODEL_NAME)
|
| 124 |
+
chatbot_pipe = pipeline(
|
| 125 |
+
"text2text-generation",
|
| 126 |
+
model=model,
|
| 127 |
+
tokenizer=tokenizer,
|
| 128 |
+
device=0 if torch.cuda.is_available() else -1
|
| 129 |
+
)
|
| 130 |
+
print("Chatbot initialized successfully")
|
| 131 |
+
except Exception as e:
|
| 132 |
+
print("Error initializing chatbot ", e)
|
| 133 |
+
return None
|
| 134 |
return chatbot_pipe
|
| 135 |
|
| 136 |
def generate_response(message, history):
|
| 137 |
+
if chatbot_pipe is None:
|
| 138 |
+
print("Chatbot pipeline not initialized")
|
| 139 |
+
return "System error: Chatbot not ready"
|
|
|
|
|
|
|
| 140 |
|
| 141 |
+
try:
|
| 142 |
+
print("Generating response for query ", message)
|
| 143 |
+
response = chatbot_pipe(
|
| 144 |
+
f"question: {message} answer:",
|
| 145 |
+
max_length=128,
|
| 146 |
+
do_sample=True,
|
| 147 |
+
temperature=0.7,
|
| 148 |
+
top_p=0.9
|
| 149 |
+
)[0]['generated_text']
|
| 150 |
+
final_response = response.split("answer:")[-1].strip()
|
| 151 |
+
print("Generated response ", final_response)
|
| 152 |
+
return final_response
|
| 153 |
+
except Exception as e:
|
| 154 |
+
print("Error generating response ", e)
|
| 155 |
+
return "Sorry, I encountered an error processing your request"
|
| 156 |
|
|
|
|
| 157 |
def deploy_chatbot():
|
| 158 |
+
print("Launching chatbot interface")
|
| 159 |
demo = gr.ChatInterface(
|
| 160 |
fn=generate_response,
|
| 161 |
+
title="Mujtaba's Shopify Assistant",
|
| 162 |
+
description="Ask about products, shipping, or store policies",
|
| 163 |
examples=[
|
| 164 |
+
"Will this work with iPhone 15?",
|
| 165 |
+
"What's the return window?",
|
| 166 |
+
"Do you ship to Lahore?"
|
| 167 |
],
|
| 168 |
+
theme="soft",
|
| 169 |
+
cache_examples=False
|
| 170 |
)
|
| 171 |
return demo
|
| 172 |
|
|
|
|
| 173 |
if __name__ == "__main__":
|
|
|
|
| 174 |
notebook_login()
|
|
|
|
|
|
|
| 175 |
dataset = load_and_preprocess_data()
|
| 176 |
+
tokenized_data = tokenize_data(dataset)
|
|
|
|
|
|
|
|
|
|
| 177 |
|
| 178 |
+
model = fine_tune_model(tokenized_data)
|
|
|
|
| 179 |
|
| 180 |
+
initialize_chatbot()
|
| 181 |
+
deploy_chatbot().launch()
|
|
|