Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,175 +1,62 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from
|
| 3 |
-
from datasets import load_dataset
|
| 4 |
-
import torch
|
| 5 |
-
import pandas as pd
|
| 6 |
-
from transformers import DataCollatorForLanguageModeling
|
| 7 |
-
from sklearn.model_selection import train_test_split
|
| 8 |
|
| 9 |
-
|
| 10 |
DATASET_NAME = "embedding-data/Amazon-QA"
|
| 11 |
-
FINETUNED_MODEL_NAME = "MujtabaShopifyChatbot"
|
| 12 |
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
dataset = load_dataset(DATASET_NAME)
|
| 29 |
-
show_dataset_head(dataset)
|
| 30 |
-
|
| 31 |
-
df = pd.DataFrame(dataset['train'])
|
| 32 |
-
|
| 33 |
-
if 'query' in df.columns and 'pos' in df.columns:
|
| 34 |
-
df = df.rename(columns={'query': 'question', 'pos': 'answer'})
|
| 35 |
-
elif 'question' not in df.columns or 'answer' not in df.columns:
|
| 36 |
-
df = df.rename(columns={df.columns[0]: 'question', df.columns[1]: 'answer'})
|
| 37 |
-
|
| 38 |
-
df = df[['question', 'answer']].dropna()
|
| 39 |
-
df = df[:5000]
|
| 40 |
-
|
| 41 |
-
df['answer'] = df['answer'].astype(str).str.replace(r'\[\^|\].*', '', regex=True)
|
| 42 |
-
|
| 43 |
-
processed_dataset = Dataset.from_pandas(df)
|
| 44 |
-
show_dataset_head(processed_dataset)
|
| 45 |
-
return processed_dataset.train_test_split(test_size=0.1)
|
| 46 |
-
except Exception as e:
|
| 47 |
-
print("Error loading dataset ", e)
|
| 48 |
-
raise
|
| 49 |
-
|
| 50 |
-
def tokenize_data(dataset):
|
| 51 |
-
print("Tokenizing data with model ", MODEL_NAME)
|
| 52 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 53 |
-
tokenizer.pad_token = tokenizer.eos_token
|
| 54 |
-
|
| 55 |
-
def preprocess_function(examples):
|
| 56 |
-
inputs = [f"question: {q} answer: {a}" for q, a in zip(examples["question"], examples["answer"])]
|
| 57 |
-
|
| 58 |
-
model_inputs = tokenizer(
|
| 59 |
-
inputs,
|
| 60 |
-
max_length=128,
|
| 61 |
-
truncation=True,
|
| 62 |
-
padding='max_length'
|
| 63 |
-
)
|
| 64 |
-
|
| 65 |
-
model_inputs["labels"] = model_inputs["input_ids"].copy()
|
| 66 |
-
return model_inputs
|
| 67 |
-
|
| 68 |
-
return dataset.map(preprocess_function, batched=True)
|
| 69 |
-
|
| 70 |
-
def fine_tune_model(tokenized_dataset):
|
| 71 |
-
print("Starting fine-tuning process")
|
| 72 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 73 |
-
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
| 74 |
-
tokenizer.pad_token = tokenizer.eos_token
|
| 75 |
-
|
| 76 |
-
data_collator = DataCollatorForLanguageModeling(
|
| 77 |
-
tokenizer=tokenizer,
|
| 78 |
-
mlm=False
|
| 79 |
-
)
|
| 80 |
-
|
| 81 |
-
training_args = TrainingArguments(
|
| 82 |
-
output_dir="./results",
|
| 83 |
-
evaluation_strategy="epoch",
|
| 84 |
-
learning_rate=5e-5,
|
| 85 |
-
per_device_train_batch_size=4,
|
| 86 |
-
per_device_eval_batch_size=4,
|
| 87 |
-
num_train_epochs=3,
|
| 88 |
-
weight_decay=0.01,
|
| 89 |
-
save_total_limit=3,
|
| 90 |
-
fp16=torch.cuda.is_available(),
|
| 91 |
-
push_to_hub=False,
|
| 92 |
-
report_to="none",
|
| 93 |
-
logging_steps=100,
|
| 94 |
-
save_steps=500
|
| 95 |
-
)
|
| 96 |
-
|
| 97 |
-
trainer = Trainer(
|
| 98 |
-
model=model,
|
| 99 |
-
args=training_args,
|
| 100 |
-
train_dataset=tokenized_dataset["train"],
|
| 101 |
-
eval_dataset=tokenized_dataset["test"],
|
| 102 |
-
data_collator=data_collator
|
| 103 |
-
)
|
| 104 |
-
|
| 105 |
-
trainer.train()
|
| 106 |
-
print("Training completed, saving model")
|
| 107 |
-
model.save_pretrained(FINETUNED_MODEL_NAME)
|
| 108 |
-
tokenizer.save_pretrained(FINETUNED_MODEL_NAME)
|
| 109 |
-
return model
|
| 110 |
-
|
| 111 |
-
def initialize_chatbot():
|
| 112 |
-
global chatbot_pipe
|
| 113 |
-
print("Initializing chatbot with model ", FINETUNED_MODEL_NAME)
|
| 114 |
-
try:
|
| 115 |
-
model = AutoModelForCausalLM.from_pretrained(FINETUNED_MODEL_NAME)
|
| 116 |
-
tokenizer = AutoTokenizer.from_pretrained(FINETUNED_MODEL_NAME)
|
| 117 |
-
tokenizer.pad_token = tokenizer.eos_token
|
| 118 |
-
|
| 119 |
-
chatbot_pipe = pipeline(
|
| 120 |
-
"text-generation",
|
| 121 |
-
model=model,
|
| 122 |
-
tokenizer=tokenizer,
|
| 123 |
-
device=0 if torch.cuda.is_available() else -1
|
| 124 |
-
)
|
| 125 |
-
print("Chatbot initialized successfully")
|
| 126 |
-
except Exception as e:
|
| 127 |
-
print("Error initializing chatbot ", e)
|
| 128 |
-
return None
|
| 129 |
-
return chatbot_pipe
|
| 130 |
|
| 131 |
def generate_response(message, history):
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
return "
|
| 135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
try:
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
max_length=128,
|
| 141 |
-
do_sample=True,
|
| 142 |
temperature=0.7,
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
return
|
| 148 |
except Exception as e:
|
| 149 |
-
|
| 150 |
-
return "Sorry, I encountered an error processing your request"
|
| 151 |
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
fn=generate_response,
|
| 156 |
-
title="Mujtaba's Shopify Assistant",
|
| 157 |
-
description="Ask about products, shipping, or store policies",
|
| 158 |
examples=[
|
| 159 |
-
"
|
| 160 |
-
"
|
| 161 |
-
"
|
| 162 |
-
]
|
| 163 |
-
theme="soft",
|
| 164 |
-
cache_examples=False
|
| 165 |
)
|
| 166 |
-
return demo
|
| 167 |
-
|
| 168 |
-
if __name__ == "__main__":
|
| 169 |
-
dataset = load_and_preprocess_data()
|
| 170 |
-
tokenized_data = tokenize_data(dataset)
|
| 171 |
-
|
| 172 |
-
model = fine_tune_model(tokenized_data)
|
| 173 |
|
| 174 |
-
|
| 175 |
-
deploy_chatbot().launch()
|
|
|
|
| 1 |
+
import os
|
| 2 |
import gradio as gr
|
| 3 |
+
from groq import Groq
|
| 4 |
+
from datasets import load_dataset
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
+
GROQ_MODEL = "llama3-70b-8192"
|
| 7 |
DATASET_NAME = "embedding-data/Amazon-QA"
|
|
|
|
| 8 |
|
| 9 |
+
def load_shopify_context():
|
| 10 |
+
dataset = load_dataset(DATASET_NAME)
|
| 11 |
+
samples = dataset['train'].select(range(3))
|
| 12 |
+
examples = []
|
| 13 |
+
for sample in samples:
|
| 14 |
+
question = sample['query']
|
| 15 |
+
if isinstance(question, list):
|
| 16 |
+
question = question[0] if len(question) > 0 else "No question"
|
| 17 |
+
question = str(question).replace('\\', '/')
|
| 18 |
+
answer = sample.get('pos', sample.get('answer', ["No answer"]))
|
| 19 |
+
if isinstance(answer, list):
|
| 20 |
+
answer = answer[0] if len(answer) > 0 else "No answer"
|
| 21 |
+
answer = str(answer).replace('\\', '/')
|
| 22 |
+
examples.append(f"Q: {question}\nA: {answer}")
|
| 23 |
+
return '\n'.join(examples)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
def generate_response(message, history):
|
| 26 |
+
api_key = os.getenv("GROQ_API_KEY")
|
| 27 |
+
if not api_key:
|
| 28 |
+
return "Error: GROQ_API_KEY not set. Please add it as a secret in your Space."
|
| 29 |
+
client = Groq(api_key=api_key)
|
| 30 |
+
context = load_shopify_context()
|
| 31 |
+
conversation = []
|
| 32 |
+
for user_msg, bot_msg in history:
|
| 33 |
+
safe_user = str(user_msg).replace('\\', '/')
|
| 34 |
+
safe_bot = str(bot_msg).replace('\\', '/')
|
| 35 |
+
conversation.extend([f"User: {safe_user}", f"Assistant: {safe_bot}"])
|
| 36 |
+
safe_message = str(message).replace('\\', '/')
|
| 37 |
+
prompt = f"You are an expert Shopify support agent. Context examples:\n{context}\n{chr(10).join(conversation)}\nUser: {safe_message}\nAssistant:"
|
| 38 |
try:
|
| 39 |
+
response = client.chat.completions.create(
|
| 40 |
+
messages=[{"role": "user", "content": prompt}],
|
| 41 |
+
model=GROQ_MODEL,
|
|
|
|
|
|
|
| 42 |
temperature=0.7,
|
| 43 |
+
max_tokens=256,
|
| 44 |
+
top_p=0.9,
|
| 45 |
+
stop=["<|endoftext|>"]
|
| 46 |
+
)
|
| 47 |
+
return response.choices[0].message.content
|
| 48 |
except Exception as e:
|
| 49 |
+
return f"Error: {str(e)}"
|
|
|
|
| 50 |
|
| 51 |
+
with gr.Blocks() as app:
|
| 52 |
+
gr.Markdown("## Shopify Q&A Assistant (Groq-powered)")
|
| 53 |
+
gr.ChatInterface(
|
| 54 |
fn=generate_response,
|
|
|
|
|
|
|
| 55 |
examples=[
|
| 56 |
+
"What's your return policy?",
|
| 57 |
+
"Do you ship internationally?",
|
| 58 |
+
"Is this compatible with iPhone 15?"
|
| 59 |
+
]
|
|
|
|
|
|
|
| 60 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
+
app.launch()
|
|
|