Spaces:
Running
on
A10G
Running
on
A10G
Commit
·
dd0ab9f
1
Parent(s):
e803877
refactor
Browse files- app.py +2 -1
- helpers.py +46 -0
- models.py +5 -187
- pipelines.py +126 -0
- segmentation.py +55 -0
app.py
CHANGED
|
@@ -7,7 +7,8 @@ import numpy as np
|
|
| 7 |
import os
|
| 8 |
import time
|
| 9 |
|
| 10 |
-
from models import make_image_controlnet, make_inpainting
|
|
|
|
| 11 |
from config import HEIGHT, WIDTH, POS_PROMPT, NEG_PROMPT, COLOR_MAPPING, map_colors, map_colors_rgb
|
| 12 |
from palette import COLOR_MAPPING_CATEGORY
|
| 13 |
from preprocessing import preprocess_seg_mask, get_image, get_mask
|
|
|
|
| 7 |
import os
|
| 8 |
import time
|
| 9 |
|
| 10 |
+
from models import make_image_controlnet, make_inpainting
|
| 11 |
+
from segmentation import segment_image
|
| 12 |
from config import HEIGHT, WIDTH, POS_PROMPT, NEG_PROMPT, COLOR_MAPPING, map_colors, map_colors_rgb
|
| 13 |
from palette import COLOR_MAPPING_CATEGORY
|
| 14 |
from preprocessing import preprocess_seg_mask, get_image, get_mask
|
helpers.py
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gc
|
| 2 |
+
import torch
|
| 3 |
+
from scipy.signal import fftconvolve
|
| 4 |
+
from PIL import Image
|
| 5 |
+
|
| 6 |
+
def flush():
|
| 7 |
+
gc.collect()
|
| 8 |
+
torch.cuda.empty_cache()
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def convolution(mask: Image.Image, size=9) -> Image:
|
| 13 |
+
"""Method to blur the mask
|
| 14 |
+
Args:
|
| 15 |
+
mask (Image): masking image
|
| 16 |
+
size (int, optional): size of the blur. Defaults to 9.
|
| 17 |
+
Returns:
|
| 18 |
+
Image: blurred mask
|
| 19 |
+
"""
|
| 20 |
+
mask = np.array(mask.convert("L"))
|
| 21 |
+
conv = np.ones((size, size)) / size**2
|
| 22 |
+
mask_blended = fftconvolve(mask, conv, 'same')
|
| 23 |
+
mask_blended = mask_blended.astype(np.uint8).copy()
|
| 24 |
+
|
| 25 |
+
border = size
|
| 26 |
+
|
| 27 |
+
# replace borders with original values
|
| 28 |
+
mask_blended[:border, :] = mask[:border, :]
|
| 29 |
+
mask_blended[-border:, :] = mask[-border:, :]
|
| 30 |
+
mask_blended[:, :border] = mask[:, :border]
|
| 31 |
+
mask_blended[:, -border:] = mask[:, -border:]
|
| 32 |
+
|
| 33 |
+
return Image.fromarray(mask_blended).convert("L")
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def postprocess_image_masking(inpainted: Image, image: Image, mask: Image) -> Image:
|
| 37 |
+
"""Method to postprocess the inpainted image
|
| 38 |
+
Args:
|
| 39 |
+
inpainted (Image): inpainted image
|
| 40 |
+
image (Image): original image
|
| 41 |
+
mask (Image): mask
|
| 42 |
+
Returns:
|
| 43 |
+
Image: inpainted image
|
| 44 |
+
"""
|
| 45 |
+
final_inpainted = Image.composite(inpainted.convert("RGBA"), image.convert("RGBA"), mask)
|
| 46 |
+
return final_inpainted.convert("RGB")
|
models.py
CHANGED
|
@@ -8,176 +8,18 @@ import gc
|
|
| 8 |
import time
|
| 9 |
import numpy as np
|
| 10 |
from PIL import Image
|
| 11 |
-
from time import perf_counter
|
| 12 |
-
from contextlib import contextmanager
|
| 13 |
-
from scipy.signal import fftconvolve
|
| 14 |
from PIL import ImageFilter
|
| 15 |
|
| 16 |
-
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation
|
| 17 |
from diffusers import ControlNetModel, UniPCMultistepScheduler
|
| 18 |
-
from diffusers import StableDiffusionInpaintPipeline
|
| 19 |
|
| 20 |
from config import WIDTH, HEIGHT
|
| 21 |
from palette import ade_palette
|
| 22 |
from stable_diffusion_controlnet_inpaint_img2img import StableDiffusionControlNetInpaintImg2ImgPipeline
|
|
|
|
|
|
|
| 23 |
|
| 24 |
LOGGING = logging.getLogger(__name__)
|
| 25 |
|
| 26 |
-
def flush():
|
| 27 |
-
gc.collect()
|
| 28 |
-
torch.cuda.empty_cache()
|
| 29 |
-
|
| 30 |
-
class ControlNetPipeline:
|
| 31 |
-
def __init__(self):
|
| 32 |
-
self.in_use = False
|
| 33 |
-
self.controlnet = ControlNetModel.from_pretrained(
|
| 34 |
-
"BertChristiaens/controlnet-seg-room", torch_dtype=torch.float16)
|
| 35 |
-
|
| 36 |
-
self.pipe = StableDiffusionControlNetInpaintImg2ImgPipeline.from_pretrained(
|
| 37 |
-
"runwayml/stable-diffusion-inpainting",
|
| 38 |
-
controlnet=self.controlnet,
|
| 39 |
-
safety_checker=None,
|
| 40 |
-
torch_dtype=torch.float16
|
| 41 |
-
)
|
| 42 |
-
|
| 43 |
-
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
|
| 44 |
-
self.pipe.enable_xformers_memory_efficient_attention()
|
| 45 |
-
self.pipe = self.pipe.to("cuda")
|
| 46 |
-
|
| 47 |
-
self.waiting_queue = []
|
| 48 |
-
self.count = 0
|
| 49 |
-
|
| 50 |
-
@property
|
| 51 |
-
def queue_size(self):
|
| 52 |
-
return len(self.waiting_queue)
|
| 53 |
-
|
| 54 |
-
def __call__(self, **kwargs):
|
| 55 |
-
self.count += 1
|
| 56 |
-
number = self.count
|
| 57 |
-
|
| 58 |
-
self.waiting_queue.append(number)
|
| 59 |
-
|
| 60 |
-
# wait until the next number in the queue is the current number
|
| 61 |
-
while self.waiting_queue[0] != number:
|
| 62 |
-
print(f"Wait for your turn {number} in queue {self.waiting_queue}")
|
| 63 |
-
time.sleep(0.5)
|
| 64 |
-
pass
|
| 65 |
-
|
| 66 |
-
# it's your turn, so remove the number from the queue
|
| 67 |
-
# and call the function
|
| 68 |
-
print("It's the turn of", self.count)
|
| 69 |
-
results = self.pipe(**kwargs)
|
| 70 |
-
self.waiting_queue.pop(0)
|
| 71 |
-
flush()
|
| 72 |
-
return results
|
| 73 |
-
|
| 74 |
-
class SDPipeline:
|
| 75 |
-
def __init__(self):
|
| 76 |
-
self.pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
| 77 |
-
"stabilityai/stable-diffusion-2-inpainting",
|
| 78 |
-
torch_dtype=torch.float16,
|
| 79 |
-
safety_checker=None,
|
| 80 |
-
)
|
| 81 |
-
|
| 82 |
-
self.pipe.enable_xformers_memory_efficient_attention()
|
| 83 |
-
self.pipe = self.pipe.to("cuda")
|
| 84 |
-
|
| 85 |
-
self.waiting_queue = []
|
| 86 |
-
self.count = 0
|
| 87 |
-
|
| 88 |
-
@property
|
| 89 |
-
def queue_size(self):
|
| 90 |
-
return len(self.waiting_queue)
|
| 91 |
-
|
| 92 |
-
def __call__(self, **kwargs):
|
| 93 |
-
self.count += 1
|
| 94 |
-
number = self.count
|
| 95 |
-
|
| 96 |
-
self.waiting_queue.append(number)
|
| 97 |
-
|
| 98 |
-
# wait until the next number in the queue is the current number
|
| 99 |
-
while self.waiting_queue[0] != number:
|
| 100 |
-
print(f"Wait for your turn {number} in queue {self.waiting_queue}")
|
| 101 |
-
time.sleep(0.5)
|
| 102 |
-
pass
|
| 103 |
-
|
| 104 |
-
# it's your turn, so remove the number from the queue
|
| 105 |
-
# and call the function
|
| 106 |
-
print("It's the turn of", self.count)
|
| 107 |
-
results = self.pipe(**kwargs)
|
| 108 |
-
self.waiting_queue.pop(0)
|
| 109 |
-
flush()
|
| 110 |
-
return results
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
def convolution(mask: Image.Image, size=9) -> Image:
|
| 114 |
-
"""Method to blur the mask
|
| 115 |
-
Args:
|
| 116 |
-
mask (Image): masking image
|
| 117 |
-
size (int, optional): size of the blur. Defaults to 9.
|
| 118 |
-
Returns:
|
| 119 |
-
Image: blurred mask
|
| 120 |
-
"""
|
| 121 |
-
mask = np.array(mask.convert("L"))
|
| 122 |
-
conv = np.ones((size, size)) / size**2
|
| 123 |
-
mask_blended = fftconvolve(mask, conv, 'same')
|
| 124 |
-
mask_blended = mask_blended.astype(np.uint8).copy()
|
| 125 |
-
|
| 126 |
-
border = size
|
| 127 |
-
|
| 128 |
-
# replace borders with original values
|
| 129 |
-
mask_blended[:border, :] = mask[:border, :]
|
| 130 |
-
mask_blended[-border:, :] = mask[-border:, :]
|
| 131 |
-
mask_blended[:, :border] = mask[:, :border]
|
| 132 |
-
mask_blended[:, -border:] = mask[:, -border:]
|
| 133 |
-
|
| 134 |
-
return Image.fromarray(mask_blended).convert("L")
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
def postprocess_image_masking(inpainted: Image, image: Image, mask: Image) -> Image:
|
| 138 |
-
"""Method to postprocess the inpainted image
|
| 139 |
-
Args:
|
| 140 |
-
inpainted (Image): inpainted image
|
| 141 |
-
image (Image): original image
|
| 142 |
-
mask (Image): mask
|
| 143 |
-
Returns:
|
| 144 |
-
Image: inpainted image
|
| 145 |
-
"""
|
| 146 |
-
final_inpainted = Image.composite(inpainted.convert("RGBA"), image.convert("RGBA"), mask)
|
| 147 |
-
return final_inpainted.convert("RGB")
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
@st.experimental_singleton(max_entries=5)
|
| 151 |
-
def get_controlnet() -> ControlNetModel:
|
| 152 |
-
"""Method to load the controlnet model
|
| 153 |
-
Returns:
|
| 154 |
-
ControlNetModel: controlnet model
|
| 155 |
-
"""
|
| 156 |
-
pipe = ControlNetPipeline()
|
| 157 |
-
return pipe
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
@st.experimental_singleton(max_entries=5)
|
| 161 |
-
def get_segmentation_pipeline() -> Tuple[AutoImageProcessor, UperNetForSemanticSegmentation]:
|
| 162 |
-
"""Method to load the segmentation pipeline
|
| 163 |
-
Returns:
|
| 164 |
-
Tuple[AutoImageProcessor, UperNetForSemanticSegmentation]: segmentation pipeline
|
| 165 |
-
"""
|
| 166 |
-
image_processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-small")
|
| 167 |
-
image_segmentor = UperNetForSemanticSegmentation.from_pretrained(
|
| 168 |
-
"openmmlab/upernet-convnext-small")
|
| 169 |
-
return image_processor, image_segmentor
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
@st.experimental_singleton(max_entries=5)
|
| 173 |
-
def get_inpainting_pipeline() -> StableDiffusionInpaintPipeline:
|
| 174 |
-
"""Method to load the inpainting pipeline
|
| 175 |
-
Returns:
|
| 176 |
-
StableDiffusionInpaintPipeline: inpainting pipeline
|
| 177 |
-
"""
|
| 178 |
-
pipe = SDPipeline()
|
| 179 |
-
return pipe
|
| 180 |
-
|
| 181 |
|
| 182 |
@torch.inference_mode()
|
| 183 |
def make_image_controlnet(image: np.ndarray,
|
|
@@ -238,12 +80,13 @@ def make_inpainting(positive_prompt: str,
|
|
| 238 |
List[Image.Image]: list of generated images
|
| 239 |
"""
|
| 240 |
pipe = get_inpainting_pipeline()
|
|
|
|
| 241 |
mask_image_postproc = convolution(mask_image)
|
| 242 |
|
| 243 |
flush()
|
| 244 |
st.success(f"{pipe.queue_size} images in the queue, can take up to {(pipe.queue_size+1) * 10} seconds")
|
| 245 |
generated_image = pipe(image=image,
|
| 246 |
-
mask_image=
|
| 247 |
prompt=positive_prompt,
|
| 248 |
negative_prompt=negative_prompt,
|
| 249 |
num_inference_steps=20,
|
|
@@ -252,29 +95,4 @@ def make_inpainting(positive_prompt: str,
|
|
| 252 |
).images[0]
|
| 253 |
generated_image = postprocess_image_masking(generated_image, image, mask_image_postproc)
|
| 254 |
|
| 255 |
-
return
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
@torch.inference_mode()
|
| 259 |
-
@torch.autocast('cuda')
|
| 260 |
-
def segment_image(image: Image) -> Image:
|
| 261 |
-
"""Method to segment image
|
| 262 |
-
Args:
|
| 263 |
-
image (Image): input image
|
| 264 |
-
Returns:
|
| 265 |
-
Image: segmented image
|
| 266 |
-
"""
|
| 267 |
-
image_processor, image_segmentor = get_segmentation_pipeline()
|
| 268 |
-
pixel_values = image_processor(image, return_tensors="pt").pixel_values
|
| 269 |
-
with torch.no_grad():
|
| 270 |
-
outputs = image_segmentor(pixel_values)
|
| 271 |
-
|
| 272 |
-
seg = image_processor.post_process_semantic_segmentation(
|
| 273 |
-
outputs, target_sizes=[image.size[::-1]])[0]
|
| 274 |
-
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8)
|
| 275 |
-
palette = np.array(ade_palette())
|
| 276 |
-
for label, color in enumerate(palette):
|
| 277 |
-
color_seg[seg == label, :] = color
|
| 278 |
-
color_seg = color_seg.astype(np.uint8)
|
| 279 |
-
seg_image = Image.fromarray(color_seg).convert('RGB')
|
| 280 |
-
return seg_image
|
|
|
|
| 8 |
import time
|
| 9 |
import numpy as np
|
| 10 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
| 11 |
from PIL import ImageFilter
|
| 12 |
|
|
|
|
| 13 |
from diffusers import ControlNetModel, UniPCMultistepScheduler
|
|
|
|
| 14 |
|
| 15 |
from config import WIDTH, HEIGHT
|
| 16 |
from palette import ade_palette
|
| 17 |
from stable_diffusion_controlnet_inpaint_img2img import StableDiffusionControlNetInpaintImg2ImgPipeline
|
| 18 |
+
from helpers import flush, postprocess_image_masking, convolution
|
| 19 |
+
from pipelines import ControlNetPipeline, SDPipeline, get_inpainting_pipeline, get_controlnet
|
| 20 |
|
| 21 |
LOGGING = logging.getLogger(__name__)
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
@torch.inference_mode()
|
| 25 |
def make_image_controlnet(image: np.ndarray,
|
|
|
|
| 80 |
List[Image.Image]: list of generated images
|
| 81 |
"""
|
| 82 |
pipe = get_inpainting_pipeline()
|
| 83 |
+
mask_image = Image.fromarray((mask_image * 255).astype(np.uint8))
|
| 84 |
mask_image_postproc = convolution(mask_image)
|
| 85 |
|
| 86 |
flush()
|
| 87 |
st.success(f"{pipe.queue_size} images in the queue, can take up to {(pipe.queue_size+1) * 10} seconds")
|
| 88 |
generated_image = pipe(image=image,
|
| 89 |
+
mask_image=mask_image,
|
| 90 |
prompt=positive_prompt,
|
| 91 |
negative_prompt=negative_prompt,
|
| 92 |
num_inference_steps=20,
|
|
|
|
| 95 |
).images[0]
|
| 96 |
generated_image = postprocess_image_masking(generated_image, image, mask_image_postproc)
|
| 97 |
|
| 98 |
+
return generated_image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pipelines.py
ADDED
|
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
from typing import List, Tuple, Dict
|
| 3 |
+
|
| 4 |
+
import streamlit as st
|
| 5 |
+
import torch
|
| 6 |
+
import gc
|
| 7 |
+
import time
|
| 8 |
+
import numpy as np
|
| 9 |
+
from PIL import Image
|
| 10 |
+
from time import perf_counter
|
| 11 |
+
from contextlib import contextmanager
|
| 12 |
+
from scipy.signal import fftconvolve
|
| 13 |
+
from PIL import ImageFilter
|
| 14 |
+
|
| 15 |
+
from diffusers import ControlNetModel, UniPCMultistepScheduler
|
| 16 |
+
from diffusers import StableDiffusionInpaintPipeline
|
| 17 |
+
|
| 18 |
+
from config import WIDTH, HEIGHT
|
| 19 |
+
from stable_diffusion_controlnet_inpaint_img2img import StableDiffusionControlNetInpaintImg2ImgPipeline
|
| 20 |
+
from helpers import flush
|
| 21 |
+
|
| 22 |
+
LOGGING = logging.getLogger(__name__)
|
| 23 |
+
|
| 24 |
+
class ControlNetPipeline:
|
| 25 |
+
def __init__(self):
|
| 26 |
+
self.in_use = False
|
| 27 |
+
self.controlnet = ControlNetModel.from_pretrained(
|
| 28 |
+
"BertChristiaens/controlnet-seg-room", torch_dtype=torch.float16)
|
| 29 |
+
|
| 30 |
+
self.pipe = StableDiffusionControlNetInpaintImg2ImgPipeline.from_pretrained(
|
| 31 |
+
"runwayml/stable-diffusion-inpainting",
|
| 32 |
+
controlnet=self.controlnet,
|
| 33 |
+
safety_checker=None,
|
| 34 |
+
torch_dtype=torch.float16
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
|
| 38 |
+
self.pipe.enable_xformers_memory_efficient_attention()
|
| 39 |
+
self.pipe = self.pipe.to("cuda")
|
| 40 |
+
|
| 41 |
+
self.waiting_queue = []
|
| 42 |
+
self.count = 0
|
| 43 |
+
|
| 44 |
+
@property
|
| 45 |
+
def queue_size(self):
|
| 46 |
+
return len(self.waiting_queue)
|
| 47 |
+
|
| 48 |
+
def __call__(self, **kwargs):
|
| 49 |
+
self.count += 1
|
| 50 |
+
number = self.count
|
| 51 |
+
|
| 52 |
+
self.waiting_queue.append(number)
|
| 53 |
+
|
| 54 |
+
# wait until the next number in the queue is the current number
|
| 55 |
+
while self.waiting_queue[0] != number:
|
| 56 |
+
print(f"Wait for your turn {number} in queue {self.waiting_queue}")
|
| 57 |
+
time.sleep(0.5)
|
| 58 |
+
pass
|
| 59 |
+
|
| 60 |
+
# it's your turn, so remove the number from the queue
|
| 61 |
+
# and call the function
|
| 62 |
+
print("It's the turn of", self.count)
|
| 63 |
+
results = self.pipe(**kwargs)
|
| 64 |
+
self.waiting_queue.pop(0)
|
| 65 |
+
flush()
|
| 66 |
+
return results
|
| 67 |
+
|
| 68 |
+
class SDPipeline:
|
| 69 |
+
def __init__(self):
|
| 70 |
+
self.pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
| 71 |
+
"stabilityai/stable-diffusion-2-inpainting",
|
| 72 |
+
torch_dtype=torch.float16,
|
| 73 |
+
safety_checker=None,
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
self.pipe.enable_xformers_memory_efficient_attention()
|
| 77 |
+
self.pipe = self.pipe.to("cuda")
|
| 78 |
+
|
| 79 |
+
self.waiting_queue = []
|
| 80 |
+
self.count = 0
|
| 81 |
+
|
| 82 |
+
@property
|
| 83 |
+
def queue_size(self):
|
| 84 |
+
return len(self.waiting_queue)
|
| 85 |
+
|
| 86 |
+
def __call__(self, **kwargs):
|
| 87 |
+
self.count += 1
|
| 88 |
+
number = self.count
|
| 89 |
+
|
| 90 |
+
self.waiting_queue.append(number)
|
| 91 |
+
|
| 92 |
+
# wait until the next number in the queue is the current number
|
| 93 |
+
while self.waiting_queue[0] != number:
|
| 94 |
+
print(f"Wait for your turn {number} in queue {self.waiting_queue}")
|
| 95 |
+
time.sleep(0.5)
|
| 96 |
+
pass
|
| 97 |
+
|
| 98 |
+
# it's your turn, so remove the number from the queue
|
| 99 |
+
# and call the function
|
| 100 |
+
print("It's the turn of", self.count)
|
| 101 |
+
results = self.pipe(**kwargs)
|
| 102 |
+
self.waiting_queue.pop(0)
|
| 103 |
+
flush()
|
| 104 |
+
return results
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
@st.experimental_singleton(max_entries=5)
|
| 109 |
+
def get_controlnet():
|
| 110 |
+
"""Method to load the controlnet model
|
| 111 |
+
Returns:
|
| 112 |
+
ControlNetModel: controlnet model
|
| 113 |
+
"""
|
| 114 |
+
pipe = ControlNetPipeline()
|
| 115 |
+
return pipe
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
@st.experimental_singleton(max_entries=5)
|
| 120 |
+
def get_inpainting_pipeline():
|
| 121 |
+
"""Method to load the inpainting pipeline
|
| 122 |
+
Returns:
|
| 123 |
+
StableDiffusionInpaintPipeline: inpainting pipeline
|
| 124 |
+
"""
|
| 125 |
+
pipe = SDPipeline()
|
| 126 |
+
return pipe
|
segmentation.py
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
from typing import List, Tuple, Dict
|
| 3 |
+
|
| 4 |
+
import streamlit as st
|
| 5 |
+
import torch
|
| 6 |
+
import gc
|
| 7 |
+
import numpy as np
|
| 8 |
+
from PIL import Image
|
| 9 |
+
|
| 10 |
+
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation
|
| 11 |
+
|
| 12 |
+
from palette import ade_palette
|
| 13 |
+
|
| 14 |
+
LOGGING = logging.getLogger(__name__)
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def flush():
|
| 18 |
+
gc.collect()
|
| 19 |
+
torch.cuda.empty_cache()
|
| 20 |
+
|
| 21 |
+
@st.experimental_singleton(max_entries=5)
|
| 22 |
+
def get_segmentation_pipeline() -> Tuple[AutoImageProcessor, UperNetForSemanticSegmentation]:
|
| 23 |
+
"""Method to load the segmentation pipeline
|
| 24 |
+
Returns:
|
| 25 |
+
Tuple[AutoImageProcessor, UperNetForSemanticSegmentation]: segmentation pipeline
|
| 26 |
+
"""
|
| 27 |
+
image_processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-small")
|
| 28 |
+
image_segmentor = UperNetForSemanticSegmentation.from_pretrained(
|
| 29 |
+
"openmmlab/upernet-convnext-small")
|
| 30 |
+
return image_processor, image_segmentor
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
@torch.inference_mode()
|
| 34 |
+
@torch.autocast('cuda')
|
| 35 |
+
def segment_image(image: Image) -> Image:
|
| 36 |
+
"""Method to segment image
|
| 37 |
+
Args:
|
| 38 |
+
image (Image): input image
|
| 39 |
+
Returns:
|
| 40 |
+
Image: segmented image
|
| 41 |
+
"""
|
| 42 |
+
image_processor, image_segmentor = get_segmentation_pipeline()
|
| 43 |
+
pixel_values = image_processor(image, return_tensors="pt").pixel_values
|
| 44 |
+
with torch.no_grad():
|
| 45 |
+
outputs = image_segmentor(pixel_values)
|
| 46 |
+
|
| 47 |
+
seg = image_processor.post_process_semantic_segmentation(
|
| 48 |
+
outputs, target_sizes=[image.size[::-1]])[0]
|
| 49 |
+
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8)
|
| 50 |
+
palette = np.array(ade_palette())
|
| 51 |
+
for label, color in enumerate(palette):
|
| 52 |
+
color_seg[seg == label, :] = color
|
| 53 |
+
color_seg = color_seg.astype(np.uint8)
|
| 54 |
+
seg_image = Image.fromarray(color_seg).convert('RGB')
|
| 55 |
+
return seg_image
|