File size: 15,080 Bytes
48097f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
# Original code from ProtMamba under Apache License 2.0.
#
# Modifications made by Niklas Schmidinger, Lisa Schneckenreiter and Sohvi Luukkonen 
#   - Add option to pass input state for generation
#   - Add functions to generate sequences with xlstm

import numpy as np
import torch
from protxlstm.mamba_utils_generation  import (
    InferenceParams,
    GenerationMixin,
    GreedySearchDecoderOnlyOutput,
    modify_logits_for_top_p_filtering, 
    modify_logits_for_min_p_filtering, 
    modify_logit_for_repetition_penalty,
    SampleDecoderOnlyOutput,
    update_graph_cache
)

from protxlstm.utils import AA_TO_ID, decode_sequence

def sample_safe(logits, top_k=1, top_p=0.0, min_p=0.0, temperature=1.0):
    """Sample from top-k logits.
    Arguments:
        logits: Tensor of shape (batch_size, vocab_size)
    """
    if top_k == 1:  # Short-circuit for greedy decoding
        return logits.argmax(dim=-1)
    else:
        if top_p > 0.0:
            assert top_p <= 1.0, "top-p should be in (0, 1]."
        if top_k > 0:
            top_k = min(top_k, logits.size(-1))  # Safety check
            logits_top, indices = torch.topk(logits, top_k, dim=-1)
            if temperature != 1.0:
                logits_top /= temperature
            modify_logits_for_top_p_filtering(logits_top, top_p)

            return indices[
                torch.arange(indices.shape[0], device=indices.device),
                torch.multinomial(
                    torch.softmax(logits_top, dim=-1), num_samples=1
                ).squeeze(dim=-1),
            ]
        else:
            if min_p > 0.0:
                logits_top = logits.clone()
                max_prob = logits_top[..., 0].item()
                min_prob = max_prob * min_p
                modify_logits_for_min_p_filtering(logits_top, min_p)
                if temperature != 1.0:
                    logits_top /= temperature
                return torch.multinomial(
                    torch.softmax(logits_top, dim=-1), num_samples=1
                ).squeeze(dim=-1)
            # Clone so that when we modify for top_p we don't change the original logits
            logits_top = logits / temperature if temperature != 1.0 else logits.clone()
            modify_logits_for_top_p_filtering(logits_top, top_p)
            return torch.multinomial(
                torch.softmax(logits_top, dim=-1), num_samples=1
            ).squeeze(dim=-1)


@torch.inference_mode()
def decode_safe(
    input_ids,
    position_ids,
    seq_position_ids,
    is_fim,
    model,
    max_length,
    state=None,
    top_k=1,
    top_p=0.0,
    min_p=0.0,
    temperature=1.0,
    repetition_penalty=1.0,
    eos_token_id=None,
    teacher_outputs=None,
    vocab_size=None,
    cg=False,
    enable_timing=False,
    streamer = None,
    chunk_chunk_size = 2**15,
):
    """Decoding, either greedy or with top-k or top-p sampling.
    If top-k = 0, don't limit the number of candidates (pure sampling).
    Top-k and top-p can be used together. If top_k > 0 and top_p > 0, then top-k is applied first,
    then top-p.
    We assume that all sequences in the same batch have the same length.

    Arguments:
        input_ids: (batch, seq_len)
        max_length: int
        is_fim: dictionary with mask indices and associated position indices
        teacher_outputs (optional): (batch, seq_len). If provided, instead of sampling from the
            logits, the next token is taken from the teacher_outputs. Useful for testing.
    Returns: GreedySearchDecoderOnlyOutput or SampleDecoderOnlyOutput, with the following fields:
        sequences: (batch, max_length)
        scores: tuples of (batch, vocab_size)
    """
    if streamer is not None:
        streamer.put(input_ids.cpu())

    batch_size, seqlen_og = input_ids.shape
    teacher_output_len = teacher_outputs.shape[1] if teacher_outputs is not None else 0
    if cg:
        if not hasattr(model, "_decoding_cache"):
            model._decoding_cache = None
        model._decoding_cache = update_graph_cache(
            model,
            model._decoding_cache,
            batch_size,
            seqlen_og,
            max_length,
        )
        inference_params = model._decoding_cache.inference_params
        inference_params.reset(max_length, batch_size)
    else:
        inference_params = InferenceParams(
            max_seqlen=max_length, max_batch_size=batch_size
        )

    def get_logits(input_ids, position_ids, seq_position_ids, inference_params):
        decoding = inference_params.seqlen_offset > 0
        if not cg or not decoding:
            logits = model(
                input_ids,
                position_ids=position_ids,
                seq_position_ids=seq_position_ids,
                inference_params=inference_params,
                num_last_tokens=1,
            ).logits.squeeze(dim=1)
        else:
            logits = model._decoding_cache.run(
                input_ids,
                position_ids,
                inference_params.seqlen_offset,
                seq_position_ids=seq_position_ids,
            ).squeeze(dim=1)
        return logits[..., :vocab_size] if vocab_size is not None else logits
    
    def get_xlstm_logits_step(input_ids, position_ids, seq_position_ids, state):

        if not input_ids.shape[1] == 1:

            for i in range(input_ids.shape[1]):
                if position_ids != None:
                    token_position_ids = position_ids[:,i:(i+1)]
                else:
                    token_position_ids = None
                if seq_position_ids != None:
                    token_seq_position_ids = seq_position_ids[:,i:(i+1)]
                else:
                    token_seq_position_ids = None
                logits, state = model.step(input_ids[:,i:(i+1)], state, position_ids=token_position_ids, seq_position_ids=token_seq_position_ids)
            
        else:
            logits, state = model.step(input_ids, state, position_ids=position_ids, seq_position_ids=seq_position_ids)

        logits = logits.squeeze(dim=1)
        if vocab_size is not None:
            logits = logits[..., :vocab_size]

        return logits, state
    
    def get_xlstm_logits_chunkwise(input_ids, position_ids, seq_position_ids, chunk_chunk_size=2**15, state=None):

        assert model.config.config_dataclass.mlstm_block.mlstm.backend == "chunkwise_variable"

        for chunk in range(input_ids.shape[1]//chunk_chunk_size+1):

            start_idx = chunk*chunk_chunk_size
            end_idx = min((chunk+1)*chunk_chunk_size, input_ids.shape[1])

            if start_idx == end_idx:
                pass
            
            else:
                input_ids_chunk = input_ids[:, start_idx:end_idx]

                if not position_ids == None:
                    position_ids_chunk = position_ids[:, start_idx:end_idx]
                else:
                    position_ids_chunk = None

                if not seq_position_ids == None:
                    seq_position_ids_chunk = seq_position_ids[:, start_idx:end_idx]
                else:
                    seq_position_ids_chunk = None   

                outputs = model(input_ids_chunk, position_ids=position_ids_chunk, seq_position_ids=seq_position_ids_chunk, state=state)
                logits, state = outputs.logits, outputs.state

        logits = logits[:,-1,:]
        logits = logits.squeeze(dim=1)
        if vocab_size is not None:
            logits = logits[..., :vocab_size]

        return logits, state    
           
    def sample_tokens(logits, inference_params):
        if (
            teacher_outputs is None
            or teacher_output_len <= inference_params.seqlen_offset
        ):
            token = sample_safe(
                logits, top_k=top_k, top_p=top_p, min_p=min_p, temperature=temperature
            )
        else:
            token = teacher_outputs[:, inference_params.seqlen_offset]
        # return rearrange(token, "b -> b 1")
        return token.unsqueeze(1)

    def get_fim_position_id(
        last_position_ids, sampled_tokens, is_fim, repeat_next=False
    ):
        if type(is_fim) is dict:
            val = int(last_position_ids) + 1
            should_repeat_next = False
            if is_fim and int(sampled_tokens) in is_fim:
                val = is_fim[int(sampled_tokens)]
                should_repeat_next = True
            elif repeat_next:
                val = int(last_position_ids)
            return torch.full_like(last_position_ids, fill_value=val), should_repeat_next
        else:
            t = [get_fim_position_id(last_position_ids_, sampled_tokens_, is_fim_dict, repeat_next) for
                 (last_position_ids_, sampled_tokens_, is_fim_dict) in
                 zip(last_position_ids, sampled_tokens, is_fim)]
            return torch.stack([t_[0] for t_ in t], dim=0), t[0][1]

    def should_stop(current_token, inference_params):
        if inference_params.seqlen_offset == 0:
            return False
        if eos_token_id is not None and (current_token == eos_token_id).any():
            if current_token.shape[1] > 1:
                raise NotImplementedError("Batched eos_token_id not supported")
            return True
        if inference_params.seqlen_offset >= max_length - 1:
            return True
        return False

    start = torch.cuda.Event(enable_timing=enable_timing)
    end = torch.cuda.Event(enable_timing=enable_timing)

    if enable_timing:
        start.record()
    scores, sequences = [], [input_ids]
    new_position_ids, new_seq_position_ids = [position_ids], [seq_position_ids]
    sequences_cat = input_ids
    repeat_next = False
    if position_ids.shape[0] > 1:
        raise NotImplementedError("Batched generation with position_ids not supported")
    
    encode_context=True
    while not should_stop(sequences[-1], inference_params):

        from protxlstm.models.xlstm import xLSTMLMHeadModel
        if isinstance(model, xLSTMLMHeadModel):
            if encode_context:
                with torch.no_grad():
                    logits, state = get_xlstm_logits_chunkwise(sequences[-1], new_position_ids[-1], new_seq_position_ids[-1], state=state, chunk_chunk_size=chunk_chunk_size)
                encode_context = False
            else:
                logits, state = get_xlstm_logits_step(sequences[-1], new_position_ids[-1], new_seq_position_ids[-1], state=state)
        else:
            logits = get_logits(sequences[-1], new_position_ids[-1], new_seq_position_ids[-1], inference_params)

        scores.append(logits)
    
        inference_params.seqlen_offset += sequences[-1].shape[1]
        if repetition_penalty == 1.0:
            sampled_tokens = sample_tokens(scores[-1], inference_params)
        else:
            logits = modify_logit_for_repetition_penalty(
                scores[-1].clone(), sequences_cat, repetition_penalty
            )
            sampled_tokens = sample_tokens(logits, inference_params)
            sequences_cat = torch.cat([sequences_cat, sampled_tokens], dim=1)
        sequences.append(sampled_tokens)
        # Update position_ids
        if position_ids is not None:
            last_position_ids, repeat_next = get_fim_position_id(
                new_position_ids[-1][:, -1:], sampled_tokens, is_fim, repeat_next
            )
            new_position_ids.append(last_position_ids)
        # Update seq_position_ids
        if seq_position_ids is not None:
            new_seq_position_ids.append(new_seq_position_ids[-1][:, -1:])

        if streamer is not None:
            streamer.put(sampled_tokens.cpu())
    if streamer is not None:
        streamer.end()
    if enable_timing:
        end.record()
        torch.cuda.synchronize()
        print(f"Prompt processing + decoding time: {(start.elapsed_time(end)):.0f}ms")
    output_cls = (
        GreedySearchDecoderOnlyOutput if top_k == 1 else SampleDecoderOnlyOutput
    )
    return output_cls(sequences=torch.cat(sequences, dim=1), scores=tuple(scores))


class GenerationMixinSafe(GenerationMixin):

    def generate(
        self,
        input_ids,
        position_ids,
        seq_position_ids,
        is_fim=None,
        state=None,
        max_length=1,
        top_k=1,
        top_p=0.0,
        min_p=0.0,
        temperature=1.0,
        return_dict_in_generate=False,
        output_scores=False,
        chunk_chunk_size=2**15,
        **kwargs,
    ):

        output = decode_safe(
            input_ids,
            position_ids,
            seq_position_ids,
            is_fim,
            self,
            max_length,
            state=state,
            top_k=top_k,
            top_p=top_p,
            min_p=min_p,
            temperature=temperature,
            chunk_chunk_size=chunk_chunk_size,
            **kwargs,
        )
        if not output_scores:
            output.scores = None
        return output if return_dict_in_generate else output.sequences


def generate_sequence(model, tokens, position_ids=None, seq_position_ids=None, state=None, is_fim=False, max_length=2000, temperature=1., top_p=0.0, top_k=1,
                      return_dict_in_generate=False, output_scores=False, eos_token_id=AA_TO_ID["<cls>"], device="cuda", chunk_chunk_size=2**15):
    """Generating, either greedy or with top-k or top-p sampling.
    If top-k = 0, don't limit the number of candidates (pure sampling).
    Top-k and top-p can be used together. If top_k > 0 and top_p > 0, then top-k is applied first,
    then top-p. We assume that all sequences in the same batch have the same length.
    """
    input_ids = tokens.to(device)
    position_ids = position_ids.to(device) if position_ids is not None else None
    seq_position_ids = seq_position_ids.to(device) if seq_position_ids is not None else None
    # generate sequence
    out = model.generate(input_ids=input_ids,
                         position_ids=position_ids,
                         seq_position_ids=seq_position_ids,
                         is_fim=is_fim,
                         state=state,
                         max_length=max_length,
                         temperature=temperature,
                         top_p=top_p,
                         top_k=top_k,
                         return_dict_in_generate=return_dict_in_generate,
                         output_scores=output_scores,
                         eos_token_id=eos_token_id,
                         chunk_chunk_size=chunk_chunk_size,
                         )
    sequences = out.sequences
    dic = {"input": [decode_sequence(seq) for seq in sequences[:, :input_ids.shape[-1]].cpu().numpy()],
            "generated": [decode_sequence(seq) for seq in sequences[:, input_ids.shape[-1]:].cpu().numpy()],
            "input_tokens": [seq for seq in sequences[:, :input_ids.shape[-1]].cpu().numpy()],
            "generated_tokens": [seq for seq in sequences[:, input_ids.shape[-1]:].cpu().numpy()]}
    if output_scores:
        dic["scores"] = np.array([el.to(torch.float32).cpu().numpy() for el in out.scores]).transpose(1, 0, 2)
    return dic