Spaces:
Sleeping
Sleeping
File size: 13,482 Bytes
500cf95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
# ChatbotRAG - Complete Summary
## Tα»ng Quan Hα» Thα»ng
Hα» thα»ng ChatbotRAG hiα»n ΔΓ£ Δược nΓ’ng cαΊ₯p toΓ n diα»n vα»i cΓ‘c tΓnh nΔng advanced:
### β¨ TΓnh NΔng ChΓnh
1. **Multiple Inputs Support** (/index)
- Index tα»i Δa 10 texts + 10 images cΓΉng lΓΊc
- Average embeddings tα»± Δα»ng
2. **Advanced RAG Pipeline** (/chat)
- Query Expansion
- Multi-Query Retrieval
- Reranking with semantic similarity
- Contextual Compression
- Better Prompt Engineering
3. **PDF Support** (/upload-pdf)
- Parse PDF thΓ nh chunks
- Auto chunking vα»i overlap
- Index vΓ o RAG system
4. **Multimodal PDF** (/upload-pdf-multimodal) β NEW
- Extract text + image URLs tα»« PDF
- Link images vα»i text chunks
- Return images cΓΉng text trong chat
- Perfect cho user guides vα»i screenshots
---
## KiαΊΏn TrΓΊc Hα» Thα»ng
```
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β FastAPI Application β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β β
β ββββββββββββββββ ββββββββββββββββ ββββββββββββββββ β
β β Indexing β β Search β β Chat β β
β β Endpoints β β Endpoints β β Endpoint β β
β ββββββββββββββββ ββββββββββββββββ ββββββββββββββββ β
β β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β β
β ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ β
β β Advanced RAG Pipeline β β
β β β’ Query Expansion β β
β β β’ Multi-Query Retrieval β β
β β β’ Reranking β β
β β β’ Contextual Compression β β
β ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ β
β β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β β
β ββββββββββββββββ ββββββββββββββββ ββββββββββββββββ β
β β Jina CLIP β β Qdrant β β MongoDB β β
β β v2 β β Vector DB β β Documents β β
β ββββββββββββββββ ββββββββββββββββ ββββββββββββββββ β
β β
β ββββββββββββββββ ββββββββββββββββ β
β β PDF β β Multimodal β β
β β Parser β β PDF Parser β β
β ββββββββββββββββ ββββββββββββββββ β
β β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
```
---
## Files Quan Trα»ng
### Core System
- **main.py** - FastAPI application vα»i tαΊ₯t cαΊ£ endpoints
- **embedding_service.py** - Jina CLIP v2 embedding
- **qdrant_service.py** - Qdrant vector DB operations
- **advanced_rag.py** - Advanced RAG pipeline
### PDF Processing
- **pdf_parser.py** - Basic PDF parser (text only)
- **multimodal_pdf_parser.py** - Multimodal PDF parser (text + images)
- **batch_index_pdfs.py** - Batch indexing script
### Documentation
- **ADVANCED_RAG_GUIDE.md** - Advanced RAG features guide
- **PDF_RAG_GUIDE.md** - PDF usage guide
- **MULTIMODAL_PDF_GUIDE.md** - Multimodal PDF guide β
- **QUICK_START_PDF.md** - Quick start for PDF
- **chatbot_guide_template.md** - Template for user guide PDF
### Testing
- **test_advanced_features.py** - Test advanced features
- **test_pdf_chatbot.py** - Test PDF chatbot (example in docs)
---
## API Endpoints
### 1. Indexing
| Endpoint | Method | Description |
|----------|--------|-------------|
| `/index` | POST | Index texts + images (max 10 each) |
| `/documents` | POST | Add text document |
| `/upload-pdf` | POST | Upload PDF (text only) |
| `/upload-pdf-multimodal` | POST | Upload PDF with images β |
### 2. Search
| Endpoint | Method | Description |
|----------|--------|-------------|
| `/search` | POST | Hybrid search (text + image) |
| `/search/text` | POST | Text-only search |
| `/search/image` | POST | Image-only search |
| `/rag/search` | POST | RAG knowledge base search |
### 3. Chat
| Endpoint | Method | Description |
|----------|--------|-------------|
| `/chat` | POST | Chat with Advanced RAG |
### 4. Management
| Endpoint | Method | Description |
|----------|--------|-------------|
| `/documents/pdf` | GET | List all PDFs |
| `/documents/pdf/{id}` | DELETE | Delete PDF document |
| `/delete/{doc_id}` | DELETE | Delete document |
| `/document/{doc_id}` | GET | Get document by ID |
| `/history` | GET | Get chat history |
| `/stats` | GET | Collection statistics |
| `/` | GET | Health check + API docs |
---
## Use Cases & Recommendations
### Case 1: PDF HΖ°α»ng DαΊ«n Chα» CΓ³ Text
**Scenario:** FAQ, policy document, text guide
**Solution:** `/upload-pdf`
```bash
curl -X POST "http://localhost:8000/upload-pdf" \
-F "[email protected]" \
-F "title=FAQ"
```
### Case 2: PDF HΖ°α»ng DαΊ«n CΓ³ HΓ¬nh αΊ’nh β (Your Case)
**Scenario:** User guide vα»i screenshots, tutorial vα»i diagrams
**Solution:** `/upload-pdf-multimodal`
```bash
curl -X POST "http://localhost:8000/upload-pdf-multimodal" \
-F "file=@user_guide_with_images.pdf" \
-F "title=User Guide" \
-F "category=guide"
```
**Benefits:**
- β Extract text + image URLs
- β Link images vα»i text chunks
- β Chatbot return images in response
- β Visual context for users
### Case 3: Multiple Social Media Posts
**Scenario:** Index nhiα»u posts vα»i texts vΓ images
**Solution:** `/index` with multiple inputs
```python
data = {
'id': 'post123',
'texts': ['Post text 1', 'Post text 2', ...], # Max 10
}
files = [
('images', open('img1.jpg', 'rb')),
('images', open('img2.jpg', 'rb')), # Max 10
]
requests.post('http://localhost:8000/index', data=data, files=files)
```
### Case 4: Complex Queries
**Scenario:** CΓ’u hα»i phα»©c tαΊ‘p, cαΊ§n Δα» chΓnh xΓ‘c cao
**Solution:** Advanced RAG with full options
```python
{
'message': 'Complex question',
'use_rag': True,
'use_advanced_rag': True,
'use_reranking': True,
'use_compression': True,
'score_threshold': 0.5,
'top_k': 5
}
```
---
## Workflow Δα» XuαΊ₯t Cho BαΊ‘n
### Setup Ban ΔαΊ§u
1. **TαΊ‘o PDF hΖ°α»ng dαΊ«n sα» dα»₯ng**
- DΓΉng template: `chatbot_guide_template.md`
- Customize nα»i dung cho hα» thα»ng cα»§a bαΊ‘n
- ThΓͺm image URLs (screenshots, diagrams)
- Convert to PDF: `pandoc template.md -o guide.pdf`
2. **Upload PDF**
```bash
curl -X POST "http://localhost:8000/upload-pdf-multimodal" \
-F "file=@chatbot_user_guide.pdf" \
-F "title=HΖ°α»ng dαΊ«n sα» dα»₯ng ChatbotRAG" \
-F "category=user_guide"
```
3. **Verify**
```bash
curl http://localhost:8000/documents/pdf
# Check "type": "multimodal_pdf" vΓ "total_images"
```
### Sα» Dα»₯ng HΓ ng NgΓ y
1. **Chat vα»i user**
```python
response = requests.post('http://localhost:8000/chat', json={
'message': user_question,
'use_rag': True,
'use_advanced_rag': True,
'hf_token': 'your_token'
})
```
2. **Display response + images**
```python
# Text answer
print(response.json()['response'])
# Images (if any)
for ctx in response.json()['context_used']:
if ctx['metadata'].get('has_images'):
for url in ctx['metadata']['image_urls']:
# Display image in your UI
print(f"Image: {url}")
```
### CαΊp NhαΊt Content
1. **Update PDF** - Edit vΓ re-export
2. **XΓ³a PDF cΕ©**
```bash
curl -X DELETE http://localhost:8000/documents/pdf/old_doc_id
```
3. **Upload PDF mα»i**
```bash
curl -X POST http://localhost:8000/upload-pdf-multimodal -F "file=@new_guide.pdf"
```
---
## Performance Tips
### 1. Chunking
**Default:**
- chunk_size: 500 words
- chunk_overlap: 50 words
**Tα»i Ζ°u:**
```python
# In multimodal_pdf_parser.py
parser = MultimodalPDFParser(
chunk_size=400, # Shorter for faster retrieval
chunk_overlap=40,
min_chunk_size=50
)
```
### 2. Retrieval
**Settings tα»t:**
```python
{
'top_k': 5, # 3-7 is optimal
'score_threshold': 0.5, # 0.4-0.6 is good
'use_reranking': True, # Always enable
'use_compression': True # Keeps context relevant
}
```
### 3. LLM
**For factual answers:**
```python
{
'temperature': 0.3, # Low for accuracy
'max_tokens': 512, # Concise answers
'top_p': 0.9
}
```
---
## Troubleshooting
### Issue 1: Images khΓ΄ng Δược detect
**Solution:**
- Verify PDF cΓ³ image URLs (http://, https://)
- Check format: markdown `` hoαΊ·c HTML `<img src>`
- Test regex:
```python
from multimodal_pdf_parser import MultimodalPDFParser
parser = MultimodalPDFParser()
urls = parser.extract_image_urls("")
print(urls) # Should return ['https://example.com/img.png']
```
### Issue 2: Chatbot khΓ΄ng tΓ¬m thαΊ₯y thΓ΄ng tin
**Solution:**
- Lower score_threshold: `0.3-0.5`
- Increase top_k: `5-10`
- Enable Advanced RAG
- Rephrase question
### Issue 3: Response quΓ‘ chαΊm
**Solution:**
- GiαΊ£m top_k
- Disable compression nαΊΏu khΓ΄ng cαΊ§n
- Use basic RAG thay vì advanced for simple queries
---
## Next Steps
### Immediate (BΓ’y Giα»)
1. β System ΔΓ£ ready!
2. TαΊ‘o PDF hΖ°α»ng dαΊ«n cα»§a bαΊ‘n
3. Upload qua `/upload-pdf-multimodal`
4. Test vα»i cΓ’u hα»i thα»±c tαΊΏ
### Short Term (1-2 tuαΊ§n)
1. Collect user feedback
2. Fine-tune parameters (top_k, threshold)
3. Add more PDFs (FAQ, tutorials, etc.)
4. Monitor chat history Δα» improve content
### Long Term (Sau nΓ y)
1. **Hybrid Search vα»i BM25**
- Combine dense + sparse retrieval
- Better for keyword queries
2. **Cross-Encoder Reranking**
- Replace embedding similarity
- More accurate ranking
3. **Image Processing**
- Download vΓ process actual images
- Use Jina CLIP for image embeddings
- True multimodal embeddings (text + image vectors)
4. **RAG-Anything Integration** (NαΊΏu cαΊ§n)
- For complex PDFs with tables, charts
- Vision encoder for embedded images
- Advanced document understanding
---
## Comparison Matrix
| Approach | Text | Images | URLs | Complexity | Your Case |
|----------|------|--------|------|------------|-----------|
| Basic RAG | β | β | β | Low | β |
| PDF Parser | β | β | β | Low | β |
| **Multimodal PDF** | β | β | β | **Medium** | **β** |
| RAG-Anything | β | β | β | High | Overkill |
**Recommendation:** **Multimodal PDF** lΓ perfect cho case cα»§a bαΊ‘n!
---
## KαΊΏt LuαΊn
### Bẑn Có Gì?
β
**Multiple Inputs**: Index 10 texts + 10 images
β
**Advanced RAG**: Query expansion, reranking, compression
β
**PDF Support**: Parse vΓ index PDFs
β
**Multimodal PDF**: Extract text + image URLs, link together
β
**Complete Documentation**: Guides, examples, troubleshooting
### Là m Gì Tiếp?
1. **TαΊ‘o PDF** hΖ°α»ng dαΊ«n vα»i nα»i dung cα»§a bαΊ‘n (cΓ³ image URLs)
2. **Upload** qua `/upload-pdf-multimodal`
3. **Test** vα»i cΓ’u hα»i thα»±c tαΊΏ
4. **Iterate** - fine-tune based on feedback
### Files CαΊ§n Δα»c
**Cho PDF vα»i hΓ¬nh αΊ£nh (Your case):**
- [MULTIMODAL_PDF_GUIDE.md](MULTIMODAL_PDF_GUIDE.md) βββ
- [PDF_RAG_GUIDE.md](PDF_RAG_GUIDE.md)
**Cho Advanced RAG:**
- [ADVANCED_RAG_GUIDE.md](ADVANCED_RAG_GUIDE.md)
**Quick Start:**
- [QUICK_START_PDF.md](QUICK_START_PDF.md)
---
**Hα» thα»ng cα»§a bαΊ‘n bΓ’y giα» rαΊ₯t mαΊ‘nh! Chα» cαΊ§n upload PDF vΓ chat thΓ΄i! πππ€**
|