File size: 11,941 Bytes
500cf95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
"""
Enhanced Multimodal PDF Parser for PDFs with Text + Image URLs
Extracts text, detects image URLs, and links them together
"""

import pypdfium2 as pdfium
from typing import List, Dict, Optional, Tuple
import re
from dataclasses import dataclass, field


@dataclass
class MultimodalChunk:
    """Represents a chunk with text and associated images"""
    text: str
    page_number: int
    chunk_index: int
    image_urls: List[str] = field(default_factory=list)
    metadata: Dict = field(default_factory=dict)


class MultimodalPDFParser:
    """
    Enhanced PDF Parser that extracts text and image URLs
    Perfect for user guides with screenshots and visual instructions
    """

    def __init__(
        self,
        chunk_size: int = 500,
        chunk_overlap: int = 50,
        min_chunk_size: int = 50,
        extract_images: bool = True
    ):
        self.chunk_size = chunk_size
        self.chunk_overlap = chunk_overlap
        self.min_chunk_size = min_chunk_size
        self.extract_images = extract_images

        # URL patterns
        self.url_patterns = [
            # Standard URLs
            r'https?://[^\s<>"{}|\\^`\[\]]+',
            # Markdown images: ![alt](url)
            r'!\[.*?\]\((https?://[^\s)]+)\)',
            # HTML images: <img src="url">
            r'<img[^>]+src=["\']([^"\']+)["\']',
            # Direct image extensions
            r'https?://[^\s<>"{}|\\^`\[\]]+\.(?:jpg|jpeg|png|gif|bmp|svg|webp)',
        ]

    def extract_image_urls(self, text: str) -> List[str]:
        """
        Extract all image URLs from text

        Args:
            text: Text content

        Returns:
            List of image URLs found
        """
        urls = []

        for pattern in self.url_patterns:
            matches = re.findall(pattern, text, re.IGNORECASE)
            urls.extend(matches)

        # Remove duplicates while preserving order
        seen = set()
        unique_urls = []
        for url in urls:
            if url not in seen:
                seen.add(url)
                unique_urls.append(url)

        return unique_urls

    def extract_text_from_pdf(self, pdf_path: str) -> Dict[int, Tuple[str, List[str]]]:
        """
        Extract text and image URLs from PDF

        Args:
            pdf_path: Path to PDF file

        Returns:
            Dictionary mapping page number to (text, image_urls) tuple
        """
        pdf_pages = {}

        try:
            pdf = pdfium.PdfDocument(pdf_path)

            for page_num in range(len(pdf)):
                page = pdf[page_num]
                textpage = page.get_textpage()
                text = textpage.get_text_range()

                # Clean text
                text = self._clean_text(text)

                # Extract image URLs if enabled
                image_urls = []
                if self.extract_images:
                    image_urls = self.extract_image_urls(text)

                pdf_pages[page_num + 1] = (text, image_urls)

            return pdf_pages

        except Exception as e:
            raise Exception(f"Error reading PDF: {str(e)}")

    def _clean_text(self, text: str) -> str:
        """Clean extracted text"""
        # Remove excessive whitespace
        text = re.sub(r'\s+', ' ', text)
        # Remove special characters
        text = text.replace('\x00', '')
        return text.strip()

    def chunk_text_with_images(
        self,
        text: str,
        image_urls: List[str],
        page_number: int
    ) -> List[MultimodalChunk]:
        """
        Split text into chunks and associate images with relevant chunks

        Args:
            text: Text to chunk
            image_urls: Image URLs from the page
            page_number: Page number

        Returns:
            List of MultimodalChunk objects
        """
        # Split into words
        words = text.split()

        if len(words) < self.min_chunk_size:
            if len(words) > 0:
                return [MultimodalChunk(
                    text=text,
                    page_number=page_number,
                    chunk_index=0,
                    image_urls=image_urls,  # All images go to single chunk
                    metadata={'page': page_number, 'chunk': 0}
                )]
            return []

        chunks = []
        chunk_index = 0
        start = 0

        # Calculate how to distribute images across chunks
        images_per_chunk = len(image_urls) // max(1, len(words) // self.chunk_size) if image_urls else 0
        image_index = 0

        while start < len(words):
            end = min(start + self.chunk_size, len(words))
            chunk_words = words[start:end]
            chunk_text = ' '.join(chunk_words)

            # Assign images to this chunk
            chunk_images = []
            if image_urls:
                # Simple strategy: distribute images evenly
                # or detect if URL appears in chunk text
                for url in image_urls:
                    if url in chunk_text:
                        chunk_images.append(url)

                # If no URLs found in text, distribute evenly
                if not chunk_images and image_index < len(image_urls):
                    # Assign remaining images to chunks
                    num_imgs = min(images_per_chunk + 1, len(image_urls) - image_index)
                    chunk_images = image_urls[image_index:image_index + num_imgs]
                    image_index += num_imgs

            chunks.append(MultimodalChunk(
                text=chunk_text,
                page_number=page_number,
                chunk_index=chunk_index,
                image_urls=chunk_images,
                metadata={
                    'page': page_number,
                    'chunk': chunk_index,
                    'start_word': start,
                    'end_word': end,
                    'has_images': len(chunk_images) > 0,
                    'num_images': len(chunk_images)
                }
            ))

            chunk_index += 1
            start = end - self.chunk_overlap

            if start >= len(words) - self.min_chunk_size:
                break

        return chunks

    def parse_pdf(
        self,
        pdf_path: str,
        document_metadata: Optional[Dict] = None
    ) -> List[MultimodalChunk]:
        """
        Parse PDF into multimodal chunks

        Args:
            pdf_path: Path to PDF file
            document_metadata: Additional metadata

        Returns:
            List of MultimodalChunk objects
        """
        pages_data = self.extract_text_from_pdf(pdf_path)

        all_chunks = []
        for page_num, (text, image_urls) in pages_data.items():
            chunks = self.chunk_text_with_images(text, image_urls, page_num)

            # Add document metadata
            if document_metadata:
                for chunk in chunks:
                    chunk.metadata.update(document_metadata)

            all_chunks.extend(chunks)

        return all_chunks

    def parse_pdf_bytes(
        self,
        pdf_bytes: bytes,
        document_metadata: Optional[Dict] = None
    ) -> List[MultimodalChunk]:
        """Parse PDF from bytes"""
        import tempfile
        import os

        with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp:
            tmp.write(pdf_bytes)
            tmp_path = tmp.name

        try:
            chunks = self.parse_pdf(tmp_path, document_metadata)
            return chunks
        finally:
            if os.path.exists(tmp_path):
                os.unlink(tmp_path)


class MultimodalPDFIndexer:
    """Index multimodal PDF chunks into RAG system"""

    def __init__(self, embedding_service, qdrant_service, documents_collection):
        self.embedding_service = embedding_service
        self.qdrant_service = qdrant_service
        self.documents_collection = documents_collection
        self.parser = MultimodalPDFParser()

    def index_pdf(
        self,
        pdf_path: str,
        document_id: str,
        document_metadata: Optional[Dict] = None
    ) -> Dict:
        """Index PDF with image URLs"""
        chunks = self.parser.parse_pdf(pdf_path, document_metadata)

        indexed_count = 0
        chunk_ids = []
        total_images = 0

        for chunk in chunks:
            chunk_id = f"{document_id}_p{chunk.page_number}_c{chunk.chunk_index}"

            # Generate embedding (text-based)
            embedding = self.embedding_service.encode_text(chunk.text)

            # Prepare metadata with image URLs
            metadata = {
                'text': chunk.text,
                'document_id': document_id,
                'page': chunk.page_number,
                'chunk_index': chunk.chunk_index,
                'source': 'pdf',
                'has_images': len(chunk.image_urls) > 0,
                'image_urls': chunk.image_urls,  # Store image URLs!
                'num_images': len(chunk.image_urls),
                **chunk.metadata
            }

            # Index to Qdrant
            self.qdrant_service.index_data(
                doc_id=chunk_id,
                embedding=embedding,
                metadata=metadata
            )

            chunk_ids.append(chunk_id)
            indexed_count += 1
            total_images += len(chunk.image_urls)

        # Save document info
        doc_info = {
            'document_id': document_id,
            'type': 'multimodal_pdf',
            'file_path': pdf_path,
            'num_chunks': indexed_count,
            'total_images': total_images,
            'chunk_ids': chunk_ids,
            'metadata': document_metadata or {}
        }
        self.documents_collection.insert_one(doc_info)

        return {
            'success': True,
            'document_id': document_id,
            'chunks_indexed': indexed_count,
            'images_found': total_images,
            'chunk_ids': chunk_ids[:5]
        }

    def index_pdf_bytes(
        self,
        pdf_bytes: bytes,
        document_id: str,
        filename: str,
        document_metadata: Optional[Dict] = None
    ) -> Dict:
        """Index PDF from bytes"""
        metadata = document_metadata or {}
        metadata['filename'] = filename

        chunks = self.parser.parse_pdf_bytes(pdf_bytes, metadata)

        indexed_count = 0
        chunk_ids = []
        total_images = 0

        for chunk in chunks:
            chunk_id = f"{document_id}_p{chunk.page_number}_c{chunk.chunk_index}"

            embedding = self.embedding_service.encode_text(chunk.text)

            metadata = {
                'text': chunk.text,
                'document_id': document_id,
                'page': chunk.page_number,
                'chunk_index': chunk.chunk_index,
                'source': 'multimodal_pdf',
                'filename': filename,
                'has_images': len(chunk.image_urls) > 0,
                'image_urls': chunk.image_urls,
                'num_images': len(chunk.image_urls),
                **chunk.metadata
            }

            self.qdrant_service.index_data(
                doc_id=chunk_id,
                embedding=embedding,
                metadata=metadata
            )

            chunk_ids.append(chunk_id)
            indexed_count += 1
            total_images += len(chunk.image_urls)

        doc_info = {
            'document_id': document_id,
            'type': 'multimodal_pdf',
            'filename': filename,
            'num_chunks': indexed_count,
            'total_images': total_images,
            'chunk_ids': chunk_ids,
            'metadata': metadata
        }
        self.documents_collection.insert_one(doc_info)

        return {
            'success': True,
            'document_id': document_id,
            'filename': filename,
            'chunks_indexed': indexed_count,
            'images_found': total_images,
            'chunk_ids': chunk_ids[:5]
        }