File size: 9,748 Bytes
6c982a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
import gradio as gr
from huggingface_hub import InferenceClient
from pymongo import MongoClient
from datetime import datetime
from typing import List, Dict
import numpy as np

from embedding_service import JinaClipEmbeddingService
from qdrant_service import QdrantVectorService


class ChatbotRAG:
    """
    Chatbot RAG vα»›i:
    - LLM: GPT-OSS-20B (Hugging Face)
    - Embeddings: Jina CLIP v2
    - Vector DB: Qdrant
    - Document Store: MongoDB
    """

    def __init__(
        self,
        mongodb_uri: str = "mongodb+srv://truongtn7122003:[email protected]/",
        db_name: str = "chatbot_rag",
        collection_name: str = "documents"
    ):
        """
        Initialize ChatbotRAG

        Args:
            mongodb_uri: MongoDB connection string
            db_name: Database name
            collection_name: Collection name for documents
        """
        print("Initializing ChatbotRAG...")

        # MongoDB client
        self.mongo_client = MongoClient(mongodb_uri)
        self.db = self.mongo_client[db_name]
        self.documents_collection = self.db[collection_name]
        self.chat_history_collection = self.db["chat_history"]

        # Embedding service (Jina CLIP v2)
        self.embedding_service = JinaClipEmbeddingService(
            model_path="jinaai/jina-clip-v2"
        )

        # Qdrant vector service
        self.qdrant_service = QdrantVectorService(
            collection_name="chatbot_rag_vectors",
            vector_size=self.embedding_service.get_embedding_dimension()
        )

        print("βœ“ ChatbotRAG initialized successfully")

    def add_document(self, text: str, metadata: Dict = None) -> str:
        """
        Add document to MongoDB and Qdrant

        Args:
            text: Document text
            metadata: Additional metadata

        Returns:
            Document ID
        """
        # Save to MongoDB
        doc_data = {
            "text": text,
            "metadata": metadata or {},
            "created_at": datetime.utcnow()
        }
        result = self.documents_collection.insert_one(doc_data)
        doc_id = str(result.inserted_id)

        # Generate embedding
        embedding = self.embedding_service.encode_text(text)

        # Index to Qdrant
        self.qdrant_service.index_data(
            doc_id=doc_id,
            embedding=embedding,
            metadata={
                "text": text,
                "source": "user_upload",
                **(metadata or {})
            }
        )

        return doc_id

    def retrieve_context(self, query: str, top_k: int = 3) -> List[Dict]:
        """
        Retrieve relevant context from vector DB

        Args:
            query: User query
            top_k: Number of results to retrieve

        Returns:
            List of relevant documents
        """
        # Generate query embedding
        query_embedding = self.embedding_service.encode_text(query)

        # Search in Qdrant
        results = self.qdrant_service.search(
            query_embedding=query_embedding,
            limit=top_k,
            score_threshold=0.5  # Only get relevant results
        )

        return results

    def save_chat_history(self, user_message: str, assistant_response: str, context_used: List[Dict]):
        """
        Save chat interaction to MongoDB

        Args:
            user_message: User's message
            assistant_response: Assistant's response
            context_used: Context retrieved from RAG
        """
        chat_data = {
            "user_message": user_message,
            "assistant_response": assistant_response,
            "context_used": context_used,
            "timestamp": datetime.utcnow()
        }
        self.chat_history_collection.insert_one(chat_data)

    def respond(
        self,
        message: str,
        history: List[Dict[str, str]],
        system_message: str,
        max_tokens: int,
        temperature: float,
        top_p: float,
        use_rag: bool,
        hf_token: gr.OAuthToken,
    ):
        """
        Generate response with RAG

        Args:
            message: User message
            history: Chat history
            system_message: System prompt
            max_tokens: Max tokens to generate
            temperature: Temperature for generation
            top_p: Top-p sampling
            use_rag: Whether to use RAG retrieval
            hf_token: Hugging Face token

        Yields:
            Generated response
        """
        # Initialize LLM client
        client = InferenceClient(token=hf_token.token, model="openai/gpt-oss-20b")

        # Prepare context from RAG
        context_text = ""
        context_used = []

        if use_rag:
            # Retrieve relevant context
            retrieved_docs = self.retrieve_context(message, top_k=3)
            context_used = retrieved_docs

            if retrieved_docs:
                context_text = "\n\n**Relevant Context:**\n"
                for i, doc in enumerate(retrieved_docs, 1):
                    doc_text = doc["metadata"].get("text", "")
                    confidence = doc["confidence"]
                    context_text += f"\n[{i}] (Confidence: {confidence:.2f})\n{doc_text}\n"

                # Add context to system message
                system_message = f"{system_message}\n\n{context_text}\n\nPlease use the above context to answer the user's question when relevant."

        # Build messages for LLM
        messages = [{"role": "system", "content": system_message}]
        messages.extend(history)
        messages.append({"role": "user", "content": message})

        # Generate response
        response = ""

        try:
            for msg in client.chat_completion(
                messages,
                max_tokens=max_tokens,
                stream=True,
                temperature=temperature,
                top_p=top_p,
            ):
                choices = msg.choices
                token = ""
                if len(choices) and choices[0].delta.content:
                    token = choices[0].delta.content

                response += token
                yield response

            # Save to chat history
            self.save_chat_history(message, response, context_used)

        except Exception as e:
            error_msg = f"Error generating response: {str(e)}"
            yield error_msg


# Initialize ChatbotRAG
chatbot_rag = ChatbotRAG()


def respond_wrapper(
    message,
    history,
    system_message,
    max_tokens,
    temperature,
    top_p,
    use_rag,
    hf_token,
):
    """Wrapper for Gradio ChatInterface"""
    yield from chatbot_rag.respond(
        message=message,
        history=history,
        system_message=system_message,
        max_tokens=max_tokens,
        temperature=temperature,
        top_p=top_p,
        use_rag=use_rag,
        hf_token=hf_token,
    )


def add_document_to_rag(text: str) -> str:
    """
    Add document to RAG knowledge base

    Args:
        text: Document text

    Returns:
        Success message
    """
    try:
        doc_id = chatbot_rag.add_document(text)
        return f"βœ“ Document added successfully! ID: {doc_id}"
    except Exception as e:
        return f"βœ— Error adding document: {str(e)}"


# Create Gradio interface
with gr.Blocks(title="ChatbotRAG - GPT-OSS-20B + Jina CLIP v2 + MongoDB") as demo:
    gr.Markdown("""
    # πŸ€– ChatbotRAG

    **Features:**
    - πŸ’¬ LLM: GPT-OSS-20B
    - πŸ” Embeddings: Jina CLIP v2 (Vietnamese support)
    - πŸ“Š Vector DB: Qdrant Cloud
    - πŸ—„οΈ Document Store: MongoDB

    **How to use:**
    1. Add documents to knowledge base (optional)
    2. Toggle "Use RAG" to enable context retrieval
    3. Chat with the bot!
    """)

    with gr.Sidebar():
        gr.LoginButton()

        gr.Markdown("### βš™οΈ Settings")

        use_rag = gr.Checkbox(
            label="Use RAG",
            value=True,
            info="Enable RAG to retrieve relevant context from knowledge base"
        )

        system_message = gr.Textbox(
            value="You are a helpful AI assistant. Answer questions based on the provided context when available.",
            label="System message",
            lines=3
        )

        max_tokens = gr.Slider(
            minimum=1,
            maximum=2048,
            value=512,
            step=1,
            label="Max new tokens"
        )

        temperature = gr.Slider(
            minimum=0.1,
            maximum=4.0,
            value=0.7,
            step=0.1,
            label="Temperature"
        )

        top_p = gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)"
        )

    # Chat interface
    chatbot = gr.ChatInterface(
        respond_wrapper,
        type="messages",
        additional_inputs=[
            system_message,
            max_tokens,
            temperature,
            top_p,
            use_rag,
        ],
    )

    # Document management
    with gr.Accordion("πŸ“š Knowledge Base Management", open=False):
        gr.Markdown("### Add Documents to Knowledge Base")

        doc_text = gr.Textbox(
            label="Document Text",
            placeholder="Enter document text here...",
            lines=5
        )

        add_btn = gr.Button("Add Document", variant="primary")
        output_msg = gr.Textbox(label="Status", interactive=False)

        add_btn.click(
            fn=add_document_to_rag,
            inputs=[doc_text],
            outputs=[output_msg]
        )

    chatbot.render()


if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860)