Spaces:
Sleeping
Sleeping
File size: 9,748 Bytes
6c982a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
import gradio as gr
from huggingface_hub import InferenceClient
from pymongo import MongoClient
from datetime import datetime
from typing import List, Dict
import numpy as np
from embedding_service import JinaClipEmbeddingService
from qdrant_service import QdrantVectorService
class ChatbotRAG:
"""
Chatbot RAG vα»i:
- LLM: GPT-OSS-20B (Hugging Face)
- Embeddings: Jina CLIP v2
- Vector DB: Qdrant
- Document Store: MongoDB
"""
def __init__(
self,
mongodb_uri: str = "mongodb+srv://truongtn7122003:[email protected]/",
db_name: str = "chatbot_rag",
collection_name: str = "documents"
):
"""
Initialize ChatbotRAG
Args:
mongodb_uri: MongoDB connection string
db_name: Database name
collection_name: Collection name for documents
"""
print("Initializing ChatbotRAG...")
# MongoDB client
self.mongo_client = MongoClient(mongodb_uri)
self.db = self.mongo_client[db_name]
self.documents_collection = self.db[collection_name]
self.chat_history_collection = self.db["chat_history"]
# Embedding service (Jina CLIP v2)
self.embedding_service = JinaClipEmbeddingService(
model_path="jinaai/jina-clip-v2"
)
# Qdrant vector service
self.qdrant_service = QdrantVectorService(
collection_name="chatbot_rag_vectors",
vector_size=self.embedding_service.get_embedding_dimension()
)
print("β ChatbotRAG initialized successfully")
def add_document(self, text: str, metadata: Dict = None) -> str:
"""
Add document to MongoDB and Qdrant
Args:
text: Document text
metadata: Additional metadata
Returns:
Document ID
"""
# Save to MongoDB
doc_data = {
"text": text,
"metadata": metadata or {},
"created_at": datetime.utcnow()
}
result = self.documents_collection.insert_one(doc_data)
doc_id = str(result.inserted_id)
# Generate embedding
embedding = self.embedding_service.encode_text(text)
# Index to Qdrant
self.qdrant_service.index_data(
doc_id=doc_id,
embedding=embedding,
metadata={
"text": text,
"source": "user_upload",
**(metadata or {})
}
)
return doc_id
def retrieve_context(self, query: str, top_k: int = 3) -> List[Dict]:
"""
Retrieve relevant context from vector DB
Args:
query: User query
top_k: Number of results to retrieve
Returns:
List of relevant documents
"""
# Generate query embedding
query_embedding = self.embedding_service.encode_text(query)
# Search in Qdrant
results = self.qdrant_service.search(
query_embedding=query_embedding,
limit=top_k,
score_threshold=0.5 # Only get relevant results
)
return results
def save_chat_history(self, user_message: str, assistant_response: str, context_used: List[Dict]):
"""
Save chat interaction to MongoDB
Args:
user_message: User's message
assistant_response: Assistant's response
context_used: Context retrieved from RAG
"""
chat_data = {
"user_message": user_message,
"assistant_response": assistant_response,
"context_used": context_used,
"timestamp": datetime.utcnow()
}
self.chat_history_collection.insert_one(chat_data)
def respond(
self,
message: str,
history: List[Dict[str, str]],
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
use_rag: bool,
hf_token: gr.OAuthToken,
):
"""
Generate response with RAG
Args:
message: User message
history: Chat history
system_message: System prompt
max_tokens: Max tokens to generate
temperature: Temperature for generation
top_p: Top-p sampling
use_rag: Whether to use RAG retrieval
hf_token: Hugging Face token
Yields:
Generated response
"""
# Initialize LLM client
client = InferenceClient(token=hf_token.token, model="openai/gpt-oss-20b")
# Prepare context from RAG
context_text = ""
context_used = []
if use_rag:
# Retrieve relevant context
retrieved_docs = self.retrieve_context(message, top_k=3)
context_used = retrieved_docs
if retrieved_docs:
context_text = "\n\n**Relevant Context:**\n"
for i, doc in enumerate(retrieved_docs, 1):
doc_text = doc["metadata"].get("text", "")
confidence = doc["confidence"]
context_text += f"\n[{i}] (Confidence: {confidence:.2f})\n{doc_text}\n"
# Add context to system message
system_message = f"{system_message}\n\n{context_text}\n\nPlease use the above context to answer the user's question when relevant."
# Build messages for LLM
messages = [{"role": "system", "content": system_message}]
messages.extend(history)
messages.append({"role": "user", "content": message})
# Generate response
response = ""
try:
for msg in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
choices = msg.choices
token = ""
if len(choices) and choices[0].delta.content:
token = choices[0].delta.content
response += token
yield response
# Save to chat history
self.save_chat_history(message, response, context_used)
except Exception as e:
error_msg = f"Error generating response: {str(e)}"
yield error_msg
# Initialize ChatbotRAG
chatbot_rag = ChatbotRAG()
def respond_wrapper(
message,
history,
system_message,
max_tokens,
temperature,
top_p,
use_rag,
hf_token,
):
"""Wrapper for Gradio ChatInterface"""
yield from chatbot_rag.respond(
message=message,
history=history,
system_message=system_message,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
use_rag=use_rag,
hf_token=hf_token,
)
def add_document_to_rag(text: str) -> str:
"""
Add document to RAG knowledge base
Args:
text: Document text
Returns:
Success message
"""
try:
doc_id = chatbot_rag.add_document(text)
return f"β Document added successfully! ID: {doc_id}"
except Exception as e:
return f"β Error adding document: {str(e)}"
# Create Gradio interface
with gr.Blocks(title="ChatbotRAG - GPT-OSS-20B + Jina CLIP v2 + MongoDB") as demo:
gr.Markdown("""
# π€ ChatbotRAG
**Features:**
- π¬ LLM: GPT-OSS-20B
- π Embeddings: Jina CLIP v2 (Vietnamese support)
- π Vector DB: Qdrant Cloud
- ποΈ Document Store: MongoDB
**How to use:**
1. Add documents to knowledge base (optional)
2. Toggle "Use RAG" to enable context retrieval
3. Chat with the bot!
""")
with gr.Sidebar():
gr.LoginButton()
gr.Markdown("### βοΈ Settings")
use_rag = gr.Checkbox(
label="Use RAG",
value=True,
info="Enable RAG to retrieve relevant context from knowledge base"
)
system_message = gr.Textbox(
value="You are a helpful AI assistant. Answer questions based on the provided context when available.",
label="System message",
lines=3
)
max_tokens = gr.Slider(
minimum=1,
maximum=2048,
value=512,
step=1,
label="Max new tokens"
)
temperature = gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.7,
step=0.1,
label="Temperature"
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)"
)
# Chat interface
chatbot = gr.ChatInterface(
respond_wrapper,
type="messages",
additional_inputs=[
system_message,
max_tokens,
temperature,
top_p,
use_rag,
],
)
# Document management
with gr.Accordion("π Knowledge Base Management", open=False):
gr.Markdown("### Add Documents to Knowledge Base")
doc_text = gr.Textbox(
label="Document Text",
placeholder="Enter document text here...",
lines=5
)
add_btn = gr.Button("Add Document", variant="primary")
output_msg = gr.Textbox(label="Status", interactive=False)
add_btn.click(
fn=add_document_to_rag,
inputs=[doc_text],
outputs=[output_msg]
)
chatbot.render()
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860)
|