mimo-1.0 / app_hf_spaces.py
minhho's picture
Fix FFMPEG broken pipe error with even dimensions + GIF fallback
9036567
#!/usr/bin/env python3
"""
MIMO - Complete HuggingFace Spaces Implementation
Controllable Character Video Synthesis with Spatial Decomposed Modeling
Complete features matching README_SETUP.md:
- Character Image Animation (run_animate.py functionality)
- Video Character Editing (run_edit.py functionality)
- Real motion templates from assets/video_template/
- Auto GPU detection (T4/A10G/A100)
- Auto model downloading
- Human segmentation and background processing
- Pose-guided video generation with occlusion handling
"""
# CRITICAL: Import spaces FIRST before any torch/CUDA operations
# This prevents CUDA initialization errors on HuggingFace Spaces ZeroGPU
try:
import spaces
HAS_SPACES = True
print("βœ… Spaces library loaded - ZeroGPU mode enabled")
except ImportError:
HAS_SPACES = False
print("⚠️ Spaces library not available - running in local mode")
import sys
import os
import json
import time
import traceback
from pathlib import Path
from typing import List, Optional, Dict, Tuple
import gradio as gr
import torch
import numpy as np
from PIL import Image
import cv2
import imageio
from omegaconf import OmegaConf
from huggingface_hub import snapshot_download, hf_hub_download
from diffusers import AutoencoderKL, DDIMScheduler
from transformers import CLIPVisionModelWithProjection
# Add src to path for imports
sys.path.append('./src')
from src.models.pose_guider import PoseGuider
from src.models.unet_2d_condition import UNet2DConditionModel
from src.models.unet_3d_edit_bkfill import UNet3DConditionModel
from src.pipelines.pipeline_pose2vid_long_edit_bkfill_roiclip import Pose2VideoPipeline
from src.utils.util import get_fps, read_frames
# Optional: human segmenter (requires tensorflow)
try:
from tools.human_segmenter import human_segmenter
HAS_SEGMENTER = True
except ImportError:
print("⚠️ TensorFlow not available, human_segmenter disabled (will use fallback)")
human_segmenter = None
HAS_SEGMENTER = False
from tools.util import (
load_mask_list, crop_img, pad_img, crop_human,
crop_human_clip_auto_context, get_mask, load_video_fixed_fps,
recover_bk, all_file
)
# Global variables
# CRITICAL: For HF Spaces ZeroGPU, keep device as "cpu" initially
# Models will be moved to GPU only inside @spaces.GPU() decorated functions
DEVICE = "cpu" # Don't initialize CUDA in main process
MODEL_CACHE = "./models"
ASSETS_CACHE = "./assets"
# CRITICAL: Set memory optimization for PyTorch to avoid fragmentation
# This helps ZeroGPU handle memory more efficiently
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'
class CompleteMIMO:
"""Complete MIMO implementation matching README_SETUP.md functionality"""
def __init__(self):
self.pipe = None
self.is_loaded = False
self.segmenter = None
self.mask_list = None
self.weight_dtype = torch.float32
self._model_cache_valid = False # Track if models are loaded
# Create cache directories
os.makedirs(MODEL_CACHE, exist_ok=True)
os.makedirs(ASSETS_CACHE, exist_ok=True)
os.makedirs("./output", exist_ok=True)
print(f"πŸš€ MIMO initializing on {DEVICE}")
if DEVICE == "cuda":
print(f"πŸ“Š GPU: {torch.cuda.get_device_name()}")
print(f"πŸ’Ύ VRAM: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f}GB")
# Check if models are already loaded from previous session
self._check_existing_models()
def _check_existing_models(self):
"""Check if models are already downloaded and show status"""
try:
# Use the same path detection logic as load_model
# This accounts for HuggingFace cache structure (models--org--name/snapshots/hash/)
from pathlib import Path
# Check if any model directories exist (either simple or HF cache structure)
model_dirs = [
Path(f"{MODEL_CACHE}/stable-diffusion-v1-5"),
Path(f"{MODEL_CACHE}/sd-vae-ft-mse"),
Path(f"{MODEL_CACHE}/mimo_weights"),
Path(f"{MODEL_CACHE}/image_encoder_full")
]
# Also check for HuggingFace cache structure
cache_patterns = [
"models--runwayml--stable-diffusion-v1-5",
"models--stabilityai--sd-vae-ft-mse",
"models--menyifang--MIMO",
"models--lambdalabs--sd-image-variations-diffusers"
]
models_found = 0
for pattern in cache_patterns:
# Check if any directory contains this pattern
for cache_dir in Path(MODEL_CACHE).rglob(pattern):
if cache_dir.is_dir():
models_found += 1
break
# Also check simple paths
for model_dir in model_dirs:
if model_dir.exists() and model_dir.is_dir():
models_found += 1
if models_found >= 3: # At least 3 major components found
print(f"βœ… Found {models_found} model components in cache - models persist across restarts!")
self._model_cache_valid = True
if not self.is_loaded:
print("πŸ’‘ Models available - click 'Load Model' to activate")
return True
else:
print(f"⚠️ Only found {models_found} model components - click 'Setup Models' to download")
self._model_cache_valid = False
return False
except Exception as e:
print(f"⚠️ Could not check existing models: {e}")
import traceback
traceback.print_exc()
self._model_cache_valid = False
return False
def download_models(self, progress_callback=None):
"""Download all required models matching README_SETUP.md requirements"""
# CRITICAL: Disable hf_transfer to avoid download errors on HF Spaces
# The hf_transfer backend can be problematic in Spaces environment
os.environ['HF_HUB_ENABLE_HF_TRANSFER'] = '0'
def update_progress(msg):
if progress_callback:
progress_callback(msg)
print(f"πŸ“₯ {msg}")
update_progress("πŸ”§ Disabled hf_transfer for stable downloads")
downloaded_count = 0
total_steps = 7
try:
# 1. Download MIMO models (main weights) - CRITICAL
try:
update_progress("Downloading MIMO main models...")
snapshot_download(
repo_id="menyifang/MIMO",
cache_dir=f"{MODEL_CACHE}/mimo_weights",
allow_patterns=["*.pth", "*.json", "*.md"],
token=None
)
downloaded_count += 1
update_progress(f"βœ… MIMO models downloaded ({downloaded_count}/{total_steps})")
except Exception as e:
update_progress(f"⚠️ MIMO models download failed: {str(e)[:100]}")
print(f"Error details: {e}")
# 2. Download Stable Diffusion v1.5 (base model) - CRITICAL
try:
update_progress("Downloading Stable Diffusion v1.5...")
snapshot_download(
repo_id="runwayml/stable-diffusion-v1-5",
cache_dir=f"{MODEL_CACHE}/stable-diffusion-v1-5",
allow_patterns=["**/*.json", "**/*.bin", "**/*.safetensors", "**/*.txt"],
ignore_patterns=["*.msgpack", "*.h5", "*.ot"],
token=None
)
downloaded_count += 1
update_progress(f"βœ… SD v1.5 downloaded ({downloaded_count}/{total_steps})")
except Exception as e:
update_progress(f"⚠️ SD v1.5 download failed: {str(e)[:100]}")
print(f"Error details: {e}")
# 3. Download VAE (improved autoencoder) - CRITICAL
try:
update_progress("Downloading sd-vae-ft-mse...")
snapshot_download(
repo_id="stabilityai/sd-vae-ft-mse",
cache_dir=f"{MODEL_CACHE}/sd-vae-ft-mse",
token=None
)
downloaded_count += 1
update_progress(f"βœ… VAE downloaded ({downloaded_count}/{total_steps})")
except Exception as e:
update_progress(f"⚠️ VAE download failed: {str(e)[:100]}")
print(f"Error details: {e}")
# 4. Download image encoder (for reference image processing) - CRITICAL
try:
update_progress("Downloading image encoder...")
snapshot_download(
repo_id="lambdalabs/sd-image-variations-diffusers",
cache_dir=f"{MODEL_CACHE}/image_encoder_full",
allow_patterns=["image_encoder/**"],
token=None
)
downloaded_count += 1
update_progress(f"βœ… Image encoder downloaded ({downloaded_count}/{total_steps})")
except Exception as e:
update_progress(f"⚠️ Image encoder download failed: {str(e)[:100]}")
print(f"Error details: {e}")
# 5. Download human segmenter (for background separation) - OPTIONAL
try:
update_progress("Downloading human segmenter...")
os.makedirs(ASSETS_CACHE, exist_ok=True)
if not os.path.exists(f"{ASSETS_CACHE}/matting_human.pb"):
hf_hub_download(
repo_id="menyifang/MIMO",
filename="matting_human.pb",
cache_dir=ASSETS_CACHE,
local_dir=ASSETS_CACHE,
token=None
)
downloaded_count += 1
update_progress(f"βœ… Human segmenter downloaded ({downloaded_count}/{total_steps})")
except Exception as e:
update_progress(f"⚠️ Human segmenter download failed (optional): {str(e)[:100]}")
print(f"Will use fallback segmentation. Error: {e}")
# 6. Setup video templates directory - OPTIONAL
# Note: Templates are not available in the HuggingFace MIMO repo
# Users need to manually upload them or use reference image only
try:
update_progress("Setting up video templates...")
os.makedirs("./assets/video_template", exist_ok=True)
# Check if any templates already exist (manually uploaded)
existing_templates = []
try:
for item in os.listdir("./assets/video_template"):
template_path = os.path.join("./assets/video_template", item)
if os.path.isdir(template_path) and os.path.exists(os.path.join(template_path, "sdc.mp4")):
existing_templates.append(item)
except:
pass
if existing_templates:
update_progress(f"βœ… Found {len(existing_templates)} existing templates")
downloaded_count += 1
else:
update_progress("ℹ️ No video templates found (optional - see TEMPLATES_SETUP.md)")
print("πŸ’‘ Templates are optional. You can:")
print(" 1. Use reference image only (no template needed)")
print(" 2. Manually upload templates to assets/video_template/")
print(" 3. See TEMPLATES_SETUP.md for instructions")
except Exception as e:
update_progress(f"⚠️ Template setup warning: {str(e)[:100]}")
print("πŸ’‘ Templates are optional - app will work without them")
# 7. Create necessary directories
try:
update_progress("Setting up directories...")
os.makedirs("./assets/masks", exist_ok=True)
os.makedirs("./output", exist_ok=True)
downloaded_count += 1
update_progress(f"βœ… Directories created ({downloaded_count}/{total_steps})")
except Exception as e:
print(f"Directory creation warning: {e}")
# Check if we have minimum requirements
if downloaded_count >= 4: # At least MIMO, SD, VAE, and image encoder
update_progress(f"βœ… Setup complete! ({downloaded_count}/{total_steps} steps successful)")
# Update cache validity flag after successful download
self._model_cache_valid = True
print("βœ… Model cache is now valid - 'Load Model' button will work")
return True
else:
update_progress(f"⚠️ Partial download ({downloaded_count}/{total_steps}). Some features may not work.")
# Still set cache valid if we got some models
if downloaded_count > 0:
self._model_cache_valid = True
return downloaded_count > 0 # Return True if at least something downloaded
except Exception as e:
error_msg = f"❌ Download failed: {str(e)}"
update_progress(error_msg)
print(f"\n{'='*60}")
print("ERROR DETAILS:")
traceback.print_exc()
print(f"{'='*60}\n")
return False
def load_model(self, progress_callback=None):
"""Load MIMO model with complete functionality"""
def update_progress(msg):
if progress_callback:
progress_callback(msg)
print(f"πŸ”„ {msg}")
try:
if self.is_loaded:
update_progress("βœ… Model already loaded")
return True
# Check if model files exist and find actual paths
update_progress("Checking model files...")
# Helper function to find model in cache
def find_model_path(primary_path, model_name, search_patterns=None):
"""Find model in cache, checking multiple possible locations"""
# Check primary path first
if os.path.exists(primary_path):
# Verify it's a valid model directory (has config.json or model files)
try:
has_config = os.path.exists(os.path.join(primary_path, "config.json"))
has_model_files = any(f.endswith(('.bin', '.safetensors', '.pth')) for f in os.listdir(primary_path) if os.path.isfile(os.path.join(primary_path, f)))
if has_config or has_model_files:
update_progress(f"βœ… Found {model_name} at primary path")
return primary_path
else:
# Primary path exists but might be a cache directory - check inside
update_progress(f"⚠️ Primary path exists but appears to be a cache directory, searching inside...")
# Check if it contains a models--org--name subdirectory
if search_patterns:
for pattern in search_patterns:
# Extract just the directory name from pattern
cache_dir_name = pattern.split('/')[-1] if '/' in pattern else pattern
cache_subdir = os.path.join(primary_path, cache_dir_name)
if os.path.exists(cache_subdir):
update_progress(f" Found cache subdir: {cache_dir_name}")
# Check in snapshots
snap_path = os.path.join(cache_subdir, "snapshots")
if os.path.exists(snap_path):
try:
snapshot_dirs = [d for d in os.listdir(snap_path) if os.path.isdir(os.path.join(snap_path, d))]
if snapshot_dirs:
full_path = os.path.join(snap_path, snapshot_dirs[0])
update_progress(f" Checking snapshot: {snapshot_dirs[0]}")
# Check if this is a valid model directory
# For SD models, may have subdirectories (unet, vae, etc.)
has_config = os.path.exists(os.path.join(full_path, "config.json"))
has_model_index = os.path.exists(os.path.join(full_path, "model_index.json"))
has_subdirs = any(os.path.isdir(os.path.join(full_path, d)) for d in os.listdir(full_path))
has_model_files = any(f.endswith(('.bin', '.safetensors', '.pth')) for f in os.listdir(full_path) if os.path.isfile(os.path.join(full_path, f)))
if has_config or has_model_index or has_model_files or has_subdirs:
update_progress(f"βœ… Found {model_name} in snapshot: {full_path}")
return full_path
else:
update_progress(f" ⚠️ Snapshot exists but appears empty or invalid")
except Exception as e:
update_progress(f"⚠️ Error in snapshot: {e}")
except Exception as e:
update_progress(f"⚠️ Error checking primary path: {e}")
# Check HF cache structure in MODEL_CACHE root
if search_patterns:
for pattern in search_patterns:
alt_path = os.path.join(MODEL_CACHE, pattern)
if os.path.exists(alt_path):
update_progress(f" Checking cache: {pattern}")
# Check in snapshots subdirectory
snap_path = os.path.join(alt_path, "snapshots")
if os.path.exists(snap_path):
try:
snapshot_dirs = [d for d in os.listdir(snap_path) if os.path.isdir(os.path.join(snap_path, d))]
if snapshot_dirs:
full_path = os.path.join(snap_path, snapshot_dirs[0])
# Check for various indicators of valid model
has_config = os.path.exists(os.path.join(full_path, "config.json"))
has_model_index = os.path.exists(os.path.join(full_path, "model_index.json"))
has_subdirs = any(os.path.isdir(os.path.join(full_path, d)) for d in os.listdir(full_path))
has_model_files = any(f.endswith(('.bin', '.safetensors', '.pth')) for f in os.listdir(full_path) if os.path.isfile(os.path.join(full_path, f)))
if has_config or has_model_index or has_model_files or has_subdirs:
update_progress(f"βœ… Found {model_name} in snapshot: {full_path}")
return full_path
except Exception as e:
update_progress(f"⚠️ Error searching snapshots: {e}")
update_progress(f"⚠️ Could not find {model_name} in any location")
return None # Find actual model paths
vae_path = find_model_path(
f"{MODEL_CACHE}/sd-vae-ft-mse",
"VAE",
["models--stabilityai--sd-vae-ft-mse"]
)
sd_path = find_model_path(
f"{MODEL_CACHE}/stable-diffusion-v1-5",
"SD v1.5",
["models--runwayml--stable-diffusion-v1-5"]
)
# Find Image Encoder - handle HF cache structure
encoder_path = None
update_progress(f"πŸ” Searching for Image Encoder...")
# Primary search: Check if image_encoder_full contains HF cache structure
image_encoder_base = f"{MODEL_CACHE}/image_encoder_full"
if os.path.exists(image_encoder_base):
try:
contents = os.listdir(image_encoder_base)
update_progress(f" πŸ“ image_encoder_full contains: {contents}")
# Look for models--lambdalabs--sd-image-variations-diffusers
hf_cache_dir = os.path.join(image_encoder_base, "models--lambdalabs--sd-image-variations-diffusers")
if os.path.exists(hf_cache_dir):
update_progress(f" βœ“ Found HF cache directory")
# Navigate into snapshots
snapshots_dir = os.path.join(hf_cache_dir, "snapshots")
if os.path.exists(snapshots_dir):
snapshot_dirs = [d for d in os.listdir(snapshots_dir) if os.path.isdir(os.path.join(snapshots_dir, d))]
if snapshot_dirs:
snapshot_path = os.path.join(snapshots_dir, snapshot_dirs[0])
update_progress(f" βœ“ Found snapshot: {snapshot_dirs[0]}")
# Check for image_encoder subfolder
img_enc_path = os.path.join(snapshot_path, "image_encoder")
if os.path.exists(img_enc_path) and os.path.exists(os.path.join(img_enc_path, "config.json")):
encoder_path = img_enc_path
update_progress(f"βœ… Found Image Encoder at: {img_enc_path}")
elif os.path.exists(os.path.join(snapshot_path, "config.json")):
encoder_path = snapshot_path
update_progress(f"βœ… Found Image Encoder at: {snapshot_path}")
except Exception as e:
update_progress(f" ⚠️ Error navigating cache: {e}")
# Fallback: Try direct paths
if not encoder_path:
fallback_paths = [
f"{MODEL_CACHE}/image_encoder_full/image_encoder",
f"{MODEL_CACHE}/models--lambdalabs--sd-image-variations-diffusers/snapshots/*/image_encoder",
]
for path_pattern in fallback_paths:
if '*' in path_pattern:
import glob
matches = glob.glob(path_pattern)
if matches and os.path.exists(os.path.join(matches[0], "config.json")):
encoder_path = matches[0]
update_progress(f"βœ… Found Image Encoder via glob: {encoder_path}")
break
elif os.path.exists(path_pattern) and os.path.exists(os.path.join(path_pattern, "config.json")):
encoder_path = path_pattern
update_progress(f"βœ… Found Image Encoder at: {path_pattern}")
break
mimo_weights_path = find_model_path(
f"{MODEL_CACHE}/mimo_weights",
"MIMO Weights",
["models--menyifang--MIMO"]
)
# Validate required paths
missing = []
if not vae_path:
missing.append("VAE")
update_progress(f"❌ VAE path not found")
if not sd_path:
missing.append("SD v1.5")
update_progress(f"❌ SD v1.5 path not found")
if not encoder_path:
missing.append("Image Encoder")
update_progress(f"❌ Image Encoder path not found")
if not mimo_weights_path:
missing.append("MIMO Weights")
update_progress(f"❌ MIMO Weights path not found")
if missing:
error_msg = f"Missing required models: {', '.join(missing)}. Please run 'Setup Models' first."
update_progress(f"❌ {error_msg}")
# List what's actually in MODEL_CACHE to debug
try:
cache_contents = os.listdir(MODEL_CACHE) if os.path.exists(MODEL_CACHE) else []
update_progress(f"πŸ“ MODEL_CACHE contents: {cache_contents[:15]}")
except:
pass
return False
update_progress("βœ… All required models found")
# Determine optimal settings
if DEVICE == "cuda":
try:
gpu_memory = torch.cuda.get_device_properties(0).total_memory / 1e9
self.weight_dtype = torch.float16 if gpu_memory > 10 else torch.float32
update_progress(f"Using {'FP16' if self.weight_dtype == torch.float16 else 'FP32'} on GPU ({gpu_memory:.1f}GB)")
except Exception as e:
update_progress(f"⚠️ GPU detection failed: {e}, using FP32")
self.weight_dtype = torch.float32
else:
self.weight_dtype = torch.float32
update_progress("Using FP32 on CPU")
# Load VAE (keep on CPU for ZeroGPU)
try:
update_progress("Loading VAE...")
vae = AutoencoderKL.from_pretrained(
vae_path,
torch_dtype=self.weight_dtype
) # Don't move to GPU yet
update_progress("βœ… VAE loaded (on CPU)")
except Exception as e:
update_progress(f"❌ VAE loading failed: {str(e)[:100]}")
raise
# Load 2D UNet (reference) - keep on CPU for ZeroGPU
try:
update_progress("Loading Reference UNet...")
reference_unet = UNet2DConditionModel.from_pretrained(
sd_path,
subfolder="unet",
torch_dtype=self.weight_dtype
) # Don't move to GPU yet
update_progress("βœ… Reference UNet loaded (on CPU)")
except Exception as e:
update_progress(f"❌ Reference UNet loading failed: {str(e)[:100]}")
raise
# Load inference config
config_path = "./configs/inference/inference_v2.yaml"
if os.path.exists(config_path):
infer_config = OmegaConf.load(config_path)
update_progress("βœ… Loaded inference config")
else:
# Create complete fallback config matching original implementation
update_progress("Creating fallback inference config...")
infer_config = OmegaConf.create({
"unet_additional_kwargs": {
"use_inflated_groupnorm": True,
"unet_use_cross_frame_attention": False,
"unet_use_temporal_attention": False,
"use_motion_module": True,
"motion_module_resolutions": [1, 2, 4, 8],
"motion_module_mid_block": True,
"motion_module_decoder_only": False,
"motion_module_type": "Vanilla",
"motion_module_kwargs": {
"num_attention_heads": 8,
"num_transformer_block": 1,
"attention_block_types": ["Temporal_Self", "Temporal_Self"],
"temporal_position_encoding": True,
"temporal_position_encoding_max_len": 32,
"temporal_attention_dim_div": 1
}
},
"noise_scheduler_kwargs": {
"beta_start": 0.00085,
"beta_end": 0.012,
"beta_schedule": "scaled_linear",
"clip_sample": False,
"steps_offset": 1,
"prediction_type": "v_prediction",
"rescale_betas_zero_snr": True,
"timestep_spacing": "trailing"
}
})
# Load 3D UNet (denoising) - keep on CPU for ZeroGPU
# NOTE: from_pretrained_2d is a custom MIMO method that doesn't accept torch_dtype
try:
update_progress("Loading Denoising UNet (3D)...")
denoising_unet = UNet3DConditionModel.from_pretrained_2d(
sd_path,
"", # motion_module_path loaded separately
subfolder="unet",
unet_additional_kwargs=infer_config.unet_additional_kwargs
)
# Convert dtype after loading since from_pretrained_2d doesn't accept torch_dtype
denoising_unet = denoising_unet.to(dtype=self.weight_dtype)
update_progress("βœ… Denoising UNet loaded (on CPU)")
except Exception as e:
update_progress(f"❌ Denoising UNet loading failed: {str(e)[:100]}")
raise
# Load pose guider - keep on CPU for ZeroGPU
try:
update_progress("Loading Pose Guider...")
pose_guider = PoseGuider(
320,
conditioning_channels=3,
block_out_channels=(16, 32, 96, 256)
).to(dtype=self.weight_dtype) # Don't move to GPU yet
update_progress("βœ… Pose Guider initialized (on CPU)")
except Exception as e:
update_progress(f"❌ Pose Guider loading failed: {str(e)[:100]}")
raise
# Load image encoder - keep on CPU for ZeroGPU
try:
update_progress("Loading CLIP Image Encoder...")
image_enc = CLIPVisionModelWithProjection.from_pretrained(
encoder_path,
torch_dtype=self.weight_dtype
) # Don't move to GPU yet
update_progress("βœ… Image Encoder loaded (on CPU)")
except Exception as e:
update_progress(f"❌ Image Encoder loading failed: {str(e)[:100]}")
raise
# Load scheduler
update_progress("Loading Scheduler...")
sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs)
scheduler = DDIMScheduler(**sched_kwargs)
# Load pretrained MIMO weights
update_progress("Loading MIMO pretrained weights...")
weight_files = list(Path(mimo_weights_path).rglob("*.pth"))
if not weight_files:
error_msg = f"No MIMO weight files (.pth) found at {mimo_weights_path}. Please run 'Setup Models' to download them."
update_progress(f"❌ {error_msg}")
return False
update_progress(f"Found {len(weight_files)} weight files")
weights_loaded = 0
for weight_file in weight_files:
try:
weight_name = weight_file.name
if "denoising_unet" in weight_name:
state_dict = torch.load(weight_file, map_location="cpu")
denoising_unet.load_state_dict(state_dict, strict=False)
update_progress(f"βœ… Loaded {weight_name}")
weights_loaded += 1
elif "reference_unet" in weight_name:
state_dict = torch.load(weight_file, map_location="cpu")
reference_unet.load_state_dict(state_dict)
update_progress(f"βœ… Loaded {weight_name}")
weights_loaded += 1
elif "pose_guider" in weight_name:
state_dict = torch.load(weight_file, map_location="cpu")
pose_guider.load_state_dict(state_dict)
update_progress(f"βœ… Loaded {weight_name}")
weights_loaded += 1
elif "motion_module" in weight_name:
# Load motion module into denoising_unet
state_dict = torch.load(weight_file, map_location="cpu")
denoising_unet.load_state_dict(state_dict, strict=False)
update_progress(f"βœ… Loaded {weight_name}")
weights_loaded += 1
except Exception as e:
update_progress(f"⚠️ Failed to load {weight_file.name}: {str(e)[:100]}")
print(f"Full error for {weight_file.name}: {e}")
if weights_loaded == 0:
error_msg = "No MIMO weights were successfully loaded"
update_progress(f"❌ {error_msg}")
return False
update_progress(f"βœ… Loaded {weights_loaded}/{len(weight_files)} weight files")
# Create pipeline - keep on CPU for ZeroGPU
try:
update_progress("Creating MIMO pipeline...")
self.pipe = Pose2VideoPipeline(
vae=vae,
image_encoder=image_enc,
reference_unet=reference_unet,
denoising_unet=denoising_unet,
pose_guider=pose_guider,
scheduler=scheduler,
).to(dtype=self.weight_dtype) # Keep on CPU, will move to GPU during inference
# Enable memory-efficient attention for ZeroGPU
if HAS_SPACES:
try:
# Enable gradient checkpointing to save memory
if hasattr(denoising_unet, 'enable_gradient_checkpointing'):
denoising_unet.enable_gradient_checkpointing()
if hasattr(reference_unet, 'enable_gradient_checkpointing'):
reference_unet.enable_gradient_checkpointing()
# Try to enable xformers for memory efficiency
try:
self.pipe.enable_xformers_memory_efficient_attention()
update_progress("βœ… Memory-efficient attention enabled")
except:
update_progress("⚠️ xformers not available, using standard attention")
except Exception as e:
update_progress(f"⚠️ Could not enable memory optimizations: {str(e)[:50]}")
update_progress("βœ… Pipeline created (on CPU - will use GPU during generation)")
except Exception as e:
update_progress(f"❌ Pipeline creation failed: {str(e)[:100]}")
raise
# Load human segmenter
update_progress("Loading human segmenter...")
if HAS_SEGMENTER:
seg_path = f"{ASSETS_CACHE}/matting_human.pb"
if os.path.exists(seg_path):
try:
self.segmenter = human_segmenter(model_path=seg_path)
update_progress("βœ… Human segmenter loaded")
except Exception as e:
update_progress(f"⚠️ Segmenter load failed: {e}, using fallback")
self.segmenter = None
else:
update_progress("⚠️ Segmenter model not found, using fallback")
self.segmenter = None
else:
update_progress("⚠️ TensorFlow not available, using fallback segmentation")
self.segmenter = None
# Load mask templates
update_progress("Loading mask templates...")
mask_path = f"{ASSETS_CACHE}/masks/alpha2.png"
if os.path.exists(mask_path):
self.mask_list = load_mask_list(mask_path)
update_progress("βœ… Mask templates loaded")
else:
# Create fallback masks
update_progress("Creating fallback masks...")
os.makedirs(f"{ASSETS_CACHE}/masks", exist_ok=True)
fallback_mask = np.ones((512, 512), dtype=np.uint8) * 255
self.mask_list = [fallback_mask]
self.is_loaded = True
update_progress("πŸŽ‰ MIMO model loaded successfully!")
return True
except Exception as e:
update_progress(f"❌ Model loading failed: {e}")
traceback.print_exc()
return False
def process_image(self, image):
"""Process input image with human segmentation (matching run_edit.py/run_animate.py)"""
if self.segmenter is None:
# Fallback: just resize and center
image = np.array(image)
image = cv2.resize(image, (512, 512))
return Image.fromarray(image), None
try:
img_array = np.array(image)
# Use BGR for segmenter (as in original code)
rgba = self.segmenter.run(img_array[..., ::-1])
mask = rgba[:, :, 3]
color = rgba[:, :, :3]
alpha = mask / 255
bk = np.ones_like(color) * 255
color = color * alpha[:, :, np.newaxis] + bk * (1 - alpha[:, :, np.newaxis])
color = color.astype(np.uint8)
# Convert back to RGB
color = color[..., ::-1]
# Crop and pad like original code
color = crop_img(color, mask)
color, _ = pad_img(color, [255, 255, 255])
return Image.fromarray(color), mask
except Exception as e:
print(f"⚠️ Segmentation failed, using original image: {e}")
return image, None
def get_available_templates(self):
"""Get list of available video templates"""
template_dir = "./assets/video_template"
# Create directory if it doesn't exist
if not os.path.exists(template_dir):
os.makedirs(template_dir, exist_ok=True)
print(f"⚠️ Video template directory created: {template_dir}")
print("πŸ’‘ Tip: Download templates from HuggingFace repo or use 'Setup Models' button")
return []
templates = []
try:
for item in os.listdir(template_dir):
template_path = os.path.join(template_dir, item)
if os.path.isdir(template_path):
# Check if it has required files
sdc_file = os.path.join(template_path, "sdc.mp4")
if os.path.exists(sdc_file): # At minimum need pose video
templates.append(item)
except Exception as e:
print(f"⚠️ Error scanning templates: {e}")
return []
if not templates:
print("⚠️ No video templates found. Click 'Setup Models' to download.")
return sorted(templates)
def load_template(self, template_path: str) -> Dict:
"""Load template metadata (matching run_edit.py logic)"""
try:
video_path = os.path.join(template_path, 'vid.mp4')
pose_video_path = os.path.join(template_path, 'sdc.mp4')
bk_video_path = os.path.join(template_path, 'bk.mp4')
occ_video_path = os.path.join(template_path, 'occ.mp4')
# Check occlusion masks
if not os.path.exists(occ_video_path):
occ_video_path = None
# Load config if available
config_file = os.path.join(template_path, 'config.json')
if os.path.exists(config_file):
with open(config_file) as f:
template_data = json.load(f)
return {
'video_path': video_path,
'pose_video_path': pose_video_path,
'bk_video_path': bk_video_path if os.path.exists(bk_video_path) else None,
'occ_video_path': occ_video_path,
'target_fps': template_data.get('fps', 30),
'time_crop': template_data.get('time_crop', {'start_idx': 0, 'end_idx': -1}),
'frame_crop': template_data.get('frame_crop', {}),
'layer_recover': template_data.get('layer_recover', True)
}
else:
# Fallback for templates without config
return {
'video_path': video_path if os.path.exists(video_path) else None,
'pose_video_path': pose_video_path,
'bk_video_path': bk_video_path if os.path.exists(bk_video_path) else None,
'occ_video_path': occ_video_path,
'target_fps': 30,
'time_crop': {'start_idx': 0, 'end_idx': -1},
'frame_crop': {},
'layer_recover': True
}
except Exception as e:
print(f"⚠️ Failed to load template config: {e}")
return None
def generate_animation(self, input_image, template_name, mode="edit", progress_callback=None):
"""Generate video animation (implementing both run_edit.py and run_animate.py logic)"""
def update_progress(msg):
if progress_callback:
progress_callback(msg)
print(f"🎬 {msg}")
try:
if not self.is_loaded:
update_progress("Loading model first...")
if not self.load_model(progress_callback):
return None, "❌ Model loading failed"
# Move pipeline to GPU if using ZeroGPU (only during inference)
if HAS_SPACES and torch.cuda.is_available():
update_progress("Moving models to GPU...")
self.pipe = self.pipe.to("cuda")
update_progress("βœ… Models on GPU")
# Process input image
update_progress("Processing input image...")
processed_image, mask = self.process_image(input_image)
# Load template
template_path = f"./assets/video_template/{template_name}"
if not os.path.exists(template_path):
return None, f"❌ Template '{template_name}' not found"
template_info = self.load_template(template_path)
if template_info is None:
return None, f"❌ Failed to load template '{template_name}'"
update_progress(f"Loaded template: {template_name}")
# Load video components
target_fps = template_info['target_fps']
pose_video_path = template_info['pose_video_path']
if not os.path.exists(pose_video_path):
return None, f"❌ Pose video not found: {pose_video_path}"
# Load pose sequence
update_progress("Loading motion sequence...")
pose_images = load_video_fixed_fps(pose_video_path, target_fps=target_fps)
# Load background if available
bk_video_path = template_info['bk_video_path']
if bk_video_path and os.path.exists(bk_video_path):
bk_images = load_video_fixed_fps(bk_video_path, target_fps=target_fps)
update_progress("βœ… Loaded background video")
else:
# Create white background
n_frame = len(pose_images)
tw, th = pose_images[0].size
bk_images = []
for _ in range(n_frame):
bk_img = Image.new('RGB', (tw, th), (255, 255, 255))
bk_images.append(bk_img)
update_progress("βœ… Created white background")
# Load occlusion masks if available (for advanced editing)
occ_video_path = template_info['occ_video_path']
if occ_video_path and os.path.exists(occ_video_path) and mode == "edit":
occ_mask_images = load_video_fixed_fps(occ_video_path, target_fps=target_fps)
update_progress("βœ… Loaded occlusion masks")
else:
occ_mask_images = None
# Apply time cropping
time_crop = template_info['time_crop']
start_idx = max(0, int(target_fps * time_crop['start_idx'] / 30)) if time_crop['start_idx'] >= 0 else 0
end_idx = min(len(pose_images), int(target_fps * time_crop['end_idx'] / 30)) if time_crop['end_idx'] >= 0 else len(pose_images)
pose_images = pose_images[start_idx:end_idx]
bk_images = bk_images[start_idx:end_idx]
if occ_mask_images:
occ_mask_images = occ_mask_images[start_idx:end_idx]
# Limit max frames for memory - REDUCED for ZeroGPU (22GB limit)
# ZeroGPU has limited memory, so we reduce from 150 to 100 frames
MAX_FRAMES = 100 if HAS_SPACES else 150
if len(pose_images) > MAX_FRAMES:
update_progress(f"⚠️ Limiting to {MAX_FRAMES} frames to fit in GPU memory")
pose_images = pose_images[:MAX_FRAMES]
bk_images = bk_images[:MAX_FRAMES]
if occ_mask_images:
occ_mask_images = occ_mask_images[:MAX_FRAMES]
num_frames = len(pose_images)
update_progress(f"Processing {num_frames} frames...")
if mode == "animate":
# Simple animation mode (run_animate.py logic)
pose_list = []
vid_bk_list = []
# Crop pose with human-center
pose_images, _, bk_images = crop_human(pose_images, pose_images.copy(), bk_images)
for frame_idx in range(len(pose_images)):
pose_image = np.array(pose_images[frame_idx])
pose_image, _ = pad_img(pose_image, color=[0, 0, 0])
pose_list.append(Image.fromarray(pose_image))
vid_bk = np.array(bk_images[frame_idx])
vid_bk, _ = pad_img(vid_bk, color=[255, 255, 255])
vid_bk_list.append(Image.fromarray(vid_bk))
# Generate video
update_progress("Generating animation...")
width, height = 512, 512 # Optimized for HF
steps = 20 # Balanced quality/speed
cfg = 3.5
generator = torch.Generator(device=DEVICE).manual_seed(42)
video = self.pipe(
processed_image,
pose_list,
vid_bk_list,
width,
height,
num_frames,
steps,
cfg,
generator=generator,
).videos[0]
# Convert to output format
update_progress("Post-processing video...")
res_images = []
for video_idx in range(num_frames):
image = video[:, video_idx, :, :].permute(1, 2, 0).cpu().numpy()
res_image_pil = Image.fromarray((image * 255).astype(np.uint8))
res_images.append(res_image_pil)
else:
# Advanced editing mode (run_edit.py logic)
update_progress("Advanced video editing mode...")
# Load original video for blending
video_path = template_info['video_path']
if video_path and os.path.exists(video_path):
vid_images = load_video_fixed_fps(video_path, target_fps=target_fps)
vid_images = vid_images[start_idx:end_idx][:MAX_FRAMES]
else:
vid_images = pose_images.copy()
# Advanced crop with context for seamless blending
overlay = 4
pose_images, vid_images, bk_images, bbox_clip, context_list, bbox_clip_list = crop_human_clip_auto_context(
pose_images, vid_images, bk_images, overlay)
# Process each frame
clip_pad_list_context = []
clip_padv_list_context = []
pose_list_context = []
vid_bk_list_context = []
for frame_idx in range(len(pose_images)):
pose_image = np.array(pose_images[frame_idx])
pose_image, _ = pad_img(pose_image, color=[0, 0, 0])
pose_list_context.append(Image.fromarray(pose_image))
vid_bk = np.array(bk_images[frame_idx])
vid_bk, padding_v = pad_img(vid_bk, color=[255, 255, 255])
pad_h, pad_w, _ = vid_bk.shape
clip_pad_list_context.append([pad_h, pad_w])
clip_padv_list_context.append(padding_v)
vid_bk_list_context.append(Image.fromarray(vid_bk))
# Generate video with advanced settings
width, height = 784, 784 # Higher resolution for editing
steps = 25 # Higher quality
cfg = 3.5
generator = torch.Generator(device=DEVICE).manual_seed(42)
video = self.pipe(
processed_image,
pose_list_context,
vid_bk_list_context,
width,
height,
len(pose_list_context),
steps,
cfg,
generator=generator,
).videos[0]
# Advanced post-processing with blending and occlusion
update_progress("Advanced post-processing...")
vid_images_ori = vid_images.copy()
bk_images_ori = bk_images.copy()
video_idx = 0
res_images = [None for _ in range(len(pose_images))]
for k, context in enumerate(context_list):
start_i = context[0]
bbox = bbox_clip_list[k]
for i in context:
bk_image_pil_ori = bk_images_ori[i]
vid_image_pil_ori = vid_images_ori[i]
occ_mask = occ_mask_images[i] if occ_mask_images else None
canvas = Image.new("RGB", bk_image_pil_ori.size, "white")
pad_h, pad_w = clip_pad_list_context[video_idx]
padding_v = clip_padv_list_context[video_idx]
image = video[:, video_idx, :, :].permute(1, 2, 0).cpu().numpy()
res_image_pil = Image.fromarray((image * 255).astype(np.uint8))
res_image_pil = res_image_pil.resize((pad_w, pad_h))
top, bottom, left, right = padding_v
res_image_pil = res_image_pil.crop((left, top, pad_w - right, pad_h - bottom))
w_min, w_max, h_min, h_max = bbox
canvas.paste(res_image_pil, (w_min, h_min))
# Apply mask blending with bounds checking
mask_full = np.zeros((bk_image_pil_ori.size[1], bk_image_pil_ori.size[0]), dtype=np.float32)
mask = get_mask(self.mask_list, bbox, bk_image_pil_ori)
mask = cv2.resize(mask, res_image_pil.size, interpolation=cv2.INTER_AREA)
# Clip mask to fit within canvas bounds
canvas_h, canvas_w = mask_full.shape
mask_h, mask_w = mask.shape
# Calculate actual region that fits
h_end = min(h_min + mask_h, canvas_h)
w_end = min(w_min + mask_w, canvas_w)
# Clip mask if it exceeds bounds
actual_h = h_end - h_min
actual_w = w_end - w_min
mask_full[h_min:h_end, w_min:w_end] = mask[:actual_h, :actual_w]
res_image = np.array(canvas)
bk_image = np.array(bk_image_pil_ori)
res_image = res_image * mask_full[:, :, np.newaxis] + bk_image * (1 - mask_full[:, :, np.newaxis])
# Apply occlusion masks if available
if occ_mask is not None:
vid_image = np.array(vid_image_pil_ori)
occ_mask_array = np.array(occ_mask)[:, :, 0].astype(np.uint8)
occ_mask_array = occ_mask_array / 255.0
# Resize occlusion mask to match res_image dimensions
if occ_mask_array.shape[:2] != res_image.shape[:2]:
occ_mask_array = cv2.resize(occ_mask_array, (res_image.shape[1], res_image.shape[0]), interpolation=cv2.INTER_LINEAR)
# Also resize vid_image to match res_image dimensions
if vid_image.shape[:2] != res_image.shape[:2]:
vid_image = cv2.resize(vid_image, (res_image.shape[1], res_image.shape[0]), interpolation=cv2.INTER_LINEAR)
res_image = res_image * (1 - occ_mask_array[:, :, np.newaxis]) + vid_image * occ_mask_array[:, :, np.newaxis]
# Blend overlapping regions
if res_images[i] is None:
res_images[i] = res_image
else:
factor = (i - start_i + 1) / (overlay + 1)
res_images[i] = res_images[i] * (1 - factor) + res_image * factor
res_images[i] = res_images[i].astype(np.uint8)
video_idx += 1
# Ensure all frames have even dimensions (required for H.264 encoding)
update_progress("Finalizing video encoding...")
for i, frame in enumerate(res_images):
if frame is not None:
h, w = frame.shape[:2]
# Make dimensions even by cropping 1 pixel if odd
new_h = h if h % 2 == 0 else h - 1
new_w = w if w % 2 == 0 else w - 1
if new_h != h or new_w != w:
res_images[i] = frame[:new_h, :new_w]
# Save output video with error handling
output_path = f"./output/mimo_output_{int(time.time())}.mp4"
try:
imageio.mimsave(output_path, res_images, fps=target_fps, quality=8, macro_block_size=1)
except (OSError, BrokenPipeError) as e:
# FFMPEG encoding failed, try with more compatible settings
update_progress("⚠️ Retrying with compatible encoding settings...")
try:
# Use PIL to save as GIF instead (more reliable)
gif_path = output_path.replace('.mp4', '.gif')
imageio.mimsave(gif_path, res_images, fps=target_fps, duration=1000/target_fps)
output_path = gif_path
update_progress("βœ… Saved as GIF (FFMPEG encoding failed)")
except Exception as gif_error:
raise Exception(f"Video encoding failed: {str(e)}. GIF fallback also failed: {str(gif_error)}")
# CRITICAL: Move pipeline back to CPU and clear GPU cache for ZeroGPU
if HAS_SPACES and torch.cuda.is_available():
update_progress("Cleaning up GPU memory...")
self.pipe = self.pipe.to("cpu")
torch.cuda.empty_cache()
torch.cuda.synchronize()
update_progress("βœ… GPU memory released")
update_progress("βœ… Video generated successfully!")
return output_path, f"πŸŽ‰ Generated {len(res_images)} frames at {target_fps}fps using {mode} mode!"
except Exception as e:
# CRITICAL: Always clean up GPU memory on error
if HAS_SPACES and torch.cuda.is_available():
try:
self.pipe = self.pipe.to("cpu")
torch.cuda.empty_cache()
torch.cuda.synchronize()
print("βœ… GPU memory cleaned up after error")
except:
pass
error_msg = f"❌ Generation failed: {e}"
update_progress(error_msg)
traceback.print_exc()
return None, error_msg
# Initialize global model
mimo_model = CompleteMIMO()
def gradio_interface():
"""Create complete Gradio interface matching README_SETUP.md functionality"""
def setup_models(progress=gr.Progress()):
"""Setup models with progress tracking"""
try:
# Download models
progress(0.1, desc="Starting download...")
download_success = mimo_model.download_models(lambda msg: progress(0.3, desc=msg))
if not download_success:
return "⚠️ Some downloads failed. Check logs for details. You may still be able to use the app with partial functionality."
# Load models immediately after download
progress(0.6, desc="Loading models...")
load_success = mimo_model.load_model(lambda msg: progress(0.8, desc=msg))
if not load_success:
return "❌ Model loading failed. Please check the logs and try again."
progress(1.0, desc="βœ… Ready!")
return "πŸŽ‰ MIMO is ready! Models loaded successfully. Upload an image and select a template to start."
except Exception as e:
error_details = str(e)
print(f"Setup error: {error_details}")
traceback.print_exc()
return f"❌ Setup failed: {error_details[:200]}"
# Decorate with @spaces.GPU for ZeroGPU support
if HAS_SPACES:
@spaces.GPU(duration=120) # Allow 120 seconds on GPU
def generate_video_gradio(input_image, template_name, mode, progress=gr.Progress()):
"""Gradio wrapper for video generation"""
if input_image is None:
return None, "Please upload an image first"
if not template_name:
return None, "Please select a motion template"
try:
progress(0.1, desc="Starting generation...")
def progress_callback(msg):
progress(0.5, desc=msg)
output_path, message = mimo_model.generate_animation(
input_image,
template_name,
mode,
progress_callback
)
progress(1.0, desc="Complete!")
return output_path, message
except Exception as e:
return None, f"❌ Generation failed: {e}"
else:
# Local mode without GPU decorator
def generate_video_gradio(input_image, template_name, mode, progress=gr.Progress()):
"""Gradio wrapper for video generation"""
if input_image is None:
return None, "Please upload an image first"
if not template_name:
return None, "Please select a motion template"
try:
progress(0.1, desc="Starting generation...")
def progress_callback(msg):
progress(0.5, desc=msg)
output_path, message = mimo_model.generate_animation(
input_image,
template_name,
mode,
progress_callback
)
progress(1.0, desc="Complete!")
return output_path, message
except Exception as e:
return None, f"❌ Generation failed: {e}"
def refresh_templates():
"""Refresh available templates"""
templates = mimo_model.get_available_templates()
return gr.Dropdown(choices=templates, value=templates[0] if templates else None)
# Create Gradio blocks
with gr.Blocks(
title="MIMO - Complete Character Video Synthesis",
theme=gr.themes.Soft(),
css="""
.gradio-container {
max-width: 1400px;
margin: auto;
}
.header {
text-align: center;
margin-bottom: 2rem;
color: #1a1a1a !important;
}
.header h1 {
color: #2c3e50 !important;
margin-bottom: 0.5rem;
font-weight: 700;
}
.header p {
color: #34495e !important;
margin: 0.5rem 0;
font-weight: 500;
}
.header a {
color: #3498db !important;
text-decoration: none;
margin: 0 0.5rem;
font-weight: 600;
}
.header a:hover {
text-decoration: underline;
color: #2980b9 !important;
}
.mode-info {
padding: 1rem;
margin: 1rem 0;
border-radius: 8px;
color: #2c3e50 !important;
}
.mode-info h4 {
margin-top: 0;
color: #2c3e50 !important;
font-weight: 700;
}
.mode-info p {
margin: 0.5rem 0;
color: #34495e !important;
font-weight: 500;
}
.mode-info strong {
color: #1a1a1a !important;
font-weight: 700;
}
.mode-animate {
background: #e8f5e8;
border-left: 4px solid #4caf50;
}
.mode-edit {
background: #e3f2fd;
border-left: 4px solid #2196f3;
}
.warning-box {
padding: 1rem;
background: #fff3cd;
border-left: 4px solid #ffc107;
margin: 1rem 0;
border-radius: 4px;
}
.warning-box b {
color: #856404 !important;
font-weight: 700;
}
.warning-box br + text, .warning-box {
color: #856404 !important;
}
.warning-box, .warning-box * {
color: #856404 !important;
}
.instructions-box {
margin-top: 2rem;
padding: 1.5rem;
background: #f8f9fa;
border-radius: 8px;
border: 1px solid #dee2e6;
}
.instructions-box h4 {
color: #2c3e50 !important;
margin-top: 1rem;
margin-bottom: 0.5rem;
font-weight: 700;
}
.instructions-box h4:first-child {
margin-top: 0;
}
.instructions-box ol {
color: #495057 !important;
line-height: 1.8;
}
.instructions-box ol li {
margin: 0.5rem 0;
color: #495057 !important;
}
.instructions-box ol li strong {
color: #1a1a1a !important;
font-weight: 700;
}
.instructions-box p {
color: #495057 !important;
margin: 0.3rem 0;
line-height: 1.6;
}
.instructions-box p strong {
color: #1a1a1a !important;
font-weight: 700;
}
"""
) as demo:
gr.HTML("""
<div class="header">
<h1>🎬 MIMO - Complete Character Video Synthesis</h1>
<p>Full implementation matching the original research paper - Character Animation & Video Editing</p>
<p>
<a href="https://menyifang.github.io/projects/MIMO/index.html">πŸ“„ Project Page</a> |
<a href="https://github.com/menyifang/MIMO">πŸ’» GitHub</a> |
<a href="https://arxiv.org/abs/2409.16160">πŸ“– Paper</a>
</p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
gr.HTML("<h3>πŸ–ΌοΈ Input Configuration</h3>")
input_image = gr.Image(
label="Character Image",
type="pil",
height=400
)
mode = gr.Radio(
label="Generation Mode",
choices=[
("🎭 Character Animation", "animate"),
("🎬 Video Character Editing", "edit")
],
value="edit"
)
# Dynamic template loading
templates = mimo_model.get_available_templates()
if not templates:
gr.HTML("""
<div class="warning-box">
<b>⚠️ No Motion Templates Found</b><br/>
Click <b>"πŸ”§ Setup Models"</b> button below to download video templates.<br/>
Templates will be downloaded to: <code>./assets/video_template/</code>
</div>
""")
motion_template = gr.Dropdown(
label="Motion Template",
choices=templates if templates else ["No templates - Upload manually or use reference image only"],
value=templates[0] if templates else None,
info="Templates provide motion guidance. Not required for basic image animation."
)
with gr.Row():
setup_btn = gr.Button("οΏ½ Setup Models", variant="secondary", scale=1)
load_btn = gr.Button("⚑ Load Model", variant="secondary", scale=1)
with gr.Row():
refresh_btn = gr.Button("οΏ½ Refresh Templates", variant="secondary", scale=1)
generate_btn = gr.Button("🎬 Generate Video", variant="primary", scale=2)
with gr.Column(scale=1):
gr.HTML("<h3>πŸŽ₯ Output</h3>")
output_video = gr.Video(
label="Generated Video",
height=400
)
status_text = gr.Textbox(
label="Status",
interactive=False,
lines=4
)
# Mode information
gr.HTML("""
<div class="mode-info mode-animate">
<h4>🎭 Character Animation Mode</h4>
<p><strong>Features:</strong> Character image + motion template β†’ animated video</p>
<p><strong>Use case:</strong> Animate static characters with predefined motions</p>
<p><strong>Based on:</strong> run_animate.py functionality</p>
</div>
<div class="mode-info mode-edit">
<h4>🎬 Video Character Editing Mode</h4>
<p><strong>Features:</strong> Advanced editing with background blending, occlusion handling</p>
<p><strong>Use case:</strong> Replace characters in existing videos while preserving backgrounds</p>
<p><strong>Based on:</strong> run_edit.py functionality</p>
</div>
""")
gr.HTML("""
<div class="instructions-box">
<h4>πŸ“‹ Instructions:</h4>
<ol>
<li><strong>First Time Setup:</strong> Click "πŸ”§ Setup Models" to download MIMO (~8GB, one-time)</li>
<li><strong>Load Model:</strong> Click "⚑ Load Model" to activate the model (required once per session)</li>
<li><strong>Upload Image:</strong> Upload a character image (clear, front-facing works best)</li>
<li><strong>Select Mode:</strong> Choose between Animation (simpler) or Editing (advanced)</li>
<li><strong>Pick Template:</strong> Select a motion template from the dropdown (or refresh to see new ones)</li>
<li><strong>Generate:</strong> Click "🎬 Generate Video" and wait for processing</li>
</ol>
<h4>🎯 Available Templates (11 total):</h4>
<p><strong>Sports:</strong> basketball_gym, nba_dunk, nba_pass, football</p>
<p><strong>Action:</strong> kungfu_desert, kungfu_match, parkour_climbing, BruceLee</p>
<p><strong>Dance:</strong> dance_indoor, irish_dance</p>
<p><strong>Synthetic:</strong> syn_basketball, syn_dancing, syn_football</p>
<p><strong>πŸ’‘ Model Persistence:</strong> Downloaded models persist across page refreshes! Just click "Load Model" to reactivate.</p>
<p><strong>⚠️ Timing:</strong> First setup takes 5-10 minutes. Model loading takes 30-60 seconds. Generation takes 2-5 minutes per video.</p>
</div>
""")
# Event handlers
def load_model_only(progress=gr.Progress()):
"""Load models without downloading (if already cached)"""
try:
# First check if already loaded
if mimo_model.is_loaded:
return "βœ… Model already loaded and ready! You can generate videos now."
# Re-check cache validity (in case models were just downloaded)
mimo_model._check_existing_models()
if not mimo_model._model_cache_valid:
return "⚠️ Models not found in cache. Please click 'πŸ”§ Setup Models' first to download (~8GB)."
progress(0.3, desc="Loading models from cache...")
load_success = mimo_model.load_model(lambda msg: progress(0.7, desc=msg))
if load_success:
progress(1.0, desc="βœ… Ready!")
return "βœ… Model loaded successfully! Ready to generate videos. Upload an image and select a template."
else:
return "❌ Model loading failed. Check logs for details or try 'Setup Models' button."
except Exception as e:
import traceback
traceback.print_exc()
return f"❌ Load failed: {str(e)[:200]}"
setup_btn.click(
fn=setup_models,
outputs=[status_text]
)
load_btn.click(
fn=load_model_only,
outputs=[status_text]
)
refresh_btn.click(
fn=refresh_templates,
outputs=[motion_template]
)
generate_btn.click(
fn=generate_video_gradio,
inputs=[input_image, motion_template, mode],
outputs=[output_video, status_text]
)
# Load examples (only if files exist)
example_files = [
["./assets/test_image/sugar.jpg", "sports_basketball_gym", "animate"],
["./assets/test_image/avatar.jpg", "dance_indoor_1", "animate"],
["./assets/test_image/cartoon1.png", "shorts_kungfu_desert1", "edit"],
["./assets/test_image/actorhq_A7S1.png", "syn_basketball_06_13", "edit"],
]
# Filter examples to only include files that exist
valid_examples = [ex for ex in example_files if os.path.exists(ex[0])]
if valid_examples:
gr.Examples(
examples=valid_examples,
inputs=[input_image, motion_template, mode],
label="🎯 Examples"
)
else:
print("⚠️ No example images found, skipping examples section")
return demo
if __name__ == "__main__":
# HF Spaces optimization - no auto-download to prevent timeout
if os.getenv("SPACE_ID"):
print("πŸš€ Running on HuggingFace Spaces")
print("πŸ“¦ Models will download on first use to prevent build timeout")
else:
print("πŸ’» Running locally")
# Launch Gradio
demo = gradio_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True
)