|
|
import argparse |
|
|
import os |
|
|
from datetime import datetime |
|
|
from pathlib import Path |
|
|
from typing import List |
|
|
import av |
|
|
import numpy as np |
|
|
import torch |
|
|
import torchvision |
|
|
from diffusers import AutoencoderKL, DDIMScheduler |
|
|
from omegaconf import OmegaConf |
|
|
from PIL import Image |
|
|
from transformers import CLIPVisionModelWithProjection |
|
|
from src.models.pose_guider import PoseGuider |
|
|
from src.models.unet_2d_condition import UNet2DConditionModel |
|
|
from src.models.unet_3d_edit_bkfill import UNet3DConditionModel |
|
|
from src.pipelines.pipeline_pose2vid_long_edit_bkfill_roiclip import Pose2VideoPipeline |
|
|
from src.utils.util import get_fps, read_frames |
|
|
import cv2 |
|
|
from tools.human_segmenter import human_segmenter |
|
|
import imageio |
|
|
from tools.util import all_file, load_mask_list, crop_img, pad_img, crop_human_clip_auto_context, get_mask, \ |
|
|
refine_img_prepross, init_bk |
|
|
import gradio as gr |
|
|
import json |
|
|
|
|
|
MOTION_TRIGGER_WORD = { |
|
|
'sports_basketball_gym': [], |
|
|
'sports_nba_pass': [], |
|
|
'sports_nba_dunk': [], |
|
|
'movie_BruceLee1': [], |
|
|
'shorts_kungfu_match1': [], |
|
|
'shorts_kungfu_desert1': [], |
|
|
'parkour_climbing': [], |
|
|
'dance_indoor_1': [], |
|
|
'syn_basketball_06_13': [], |
|
|
'syn_dancing2_00093_irish_dance': [], |
|
|
'syn_football_10_05': [], |
|
|
} |
|
|
css_style = "#fixed_size_img {height: 500px;}" |
|
|
|
|
|
seg_path = './assets/matting_human.pb' |
|
|
try: |
|
|
if os.path.exists(seg_path): |
|
|
segmenter = human_segmenter(model_path=seg_path) |
|
|
print("✅ Human segmenter loaded successfully") |
|
|
else: |
|
|
segmenter = None |
|
|
print("⚠️ Segmenter model not found, using fallback segmentation") |
|
|
except Exception as e: |
|
|
segmenter = None |
|
|
print(f"⚠️ Failed to load segmenter: {e}, using fallback") |
|
|
|
|
|
|
|
|
def process_seg(img): |
|
|
"""Process image segmentation with fallback""" |
|
|
if segmenter is not None: |
|
|
try: |
|
|
rgba = segmenter.run(img) |
|
|
mask = rgba[:, :, 3] |
|
|
color = rgba[:, :, :3] |
|
|
alpha = mask / 255 |
|
|
bk = np.ones_like(color) * 255 |
|
|
color = color * alpha[:, :, np.newaxis] + bk * (1 - alpha[:, :, np.newaxis]) |
|
|
color = color.astype(np.uint8) |
|
|
return color, mask |
|
|
except Exception as e: |
|
|
print(f"⚠️ Segmentation failed: {e}, using simple crop") |
|
|
|
|
|
|
|
|
h, w = img.shape[:2] |
|
|
margin = min(h, w) // 10 |
|
|
mask = np.zeros((h, w), dtype=np.uint8) |
|
|
mask[margin:-margin, margin:-margin] = 255 |
|
|
return img, mask |
|
|
|
|
|
|
|
|
def parse_args(): |
|
|
parser = argparse.ArgumentParser() |
|
|
parser.add_argument("--config", type=str, default='./configs/prompts/animation_edit.yaml') |
|
|
parser.add_argument("-W", type=int, default=512) |
|
|
parser.add_argument("-H", type=int, default=512) |
|
|
parser.add_argument("-L", type=int, default=64) |
|
|
parser.add_argument("--seed", type=int, default=42) |
|
|
parser.add_argument("--cfg", type=float, default=3.5) |
|
|
parser.add_argument("--steps", type=int, default=10) |
|
|
parser.add_argument("--fps", type=int) |
|
|
parser.add_argument("--assets_dir", type=str, default='./assets') |
|
|
parser.add_argument("--ref_pad", type=int, default=1) |
|
|
parser.add_argument("--use_bk", type=int, default=1) |
|
|
parser.add_argument("--clip_length", type=int, default=16) |
|
|
parser.add_argument("--MAX_FRAME_NUM", type=int, default=150) |
|
|
args = parser.parse_args() |
|
|
return args |
|
|
|
|
|
|
|
|
class MIMO(): |
|
|
def __init__(self, debug_mode=False): |
|
|
try: |
|
|
args = parse_args() |
|
|
config = OmegaConf.load(args.config) |
|
|
|
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
if device == "cpu": |
|
|
print("⚠️ CUDA not available, running on CPU (will be slow)") |
|
|
weight_dtype = torch.float32 |
|
|
else: |
|
|
if config.weight_dtype == "fp16": |
|
|
weight_dtype = torch.float16 |
|
|
else: |
|
|
weight_dtype = torch.float32 |
|
|
print(f"✅ Using device: {device} with dtype: {weight_dtype}") |
|
|
|
|
|
vae = AutoencoderKL.from_pretrained( |
|
|
config.pretrained_vae_path, |
|
|
).to(device, dtype=weight_dtype) |
|
|
|
|
|
reference_unet = UNet2DConditionModel.from_pretrained( |
|
|
config.pretrained_base_model_path, |
|
|
subfolder="unet", |
|
|
).to(dtype=weight_dtype, device=device) |
|
|
|
|
|
inference_config_path = config.inference_config |
|
|
infer_config = OmegaConf.load(inference_config_path) |
|
|
denoising_unet = UNet3DConditionModel.from_pretrained_2d( |
|
|
config.pretrained_base_model_path, |
|
|
config.motion_module_path, |
|
|
subfolder="unet", |
|
|
unet_additional_kwargs=infer_config.unet_additional_kwargs, |
|
|
).to(dtype=weight_dtype, device=device) |
|
|
|
|
|
pose_guider = PoseGuider(320, conditioning_channels=3, block_out_channels=(16, 32, 96, 256)).to( |
|
|
dtype=weight_dtype, device=device |
|
|
) |
|
|
|
|
|
image_enc = CLIPVisionModelWithProjection.from_pretrained( |
|
|
config.image_encoder_path |
|
|
).to(dtype=weight_dtype, device=device) |
|
|
|
|
|
sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs) |
|
|
scheduler = DDIMScheduler(**sched_kwargs) |
|
|
|
|
|
self.generator = torch.manual_seed(args.seed) |
|
|
self.width, self.height = args.W, args.H |
|
|
|
|
|
|
|
|
try: |
|
|
if os.path.exists(config.denoising_unet_path): |
|
|
denoising_unet.load_state_dict( |
|
|
torch.load(config.denoising_unet_path, map_location="cpu"), |
|
|
strict=False, |
|
|
) |
|
|
print("✅ Denoising UNet weights loaded") |
|
|
else: |
|
|
print(f"❌ Denoising UNet weights not found: {config.denoising_unet_path}") |
|
|
|
|
|
if os.path.exists(config.reference_unet_path): |
|
|
reference_unet.load_state_dict( |
|
|
torch.load(config.reference_unet_path, map_location="cpu"), |
|
|
) |
|
|
print("✅ Reference UNet weights loaded") |
|
|
else: |
|
|
print(f"❌ Reference UNet weights not found: {config.reference_unet_path}") |
|
|
|
|
|
if os.path.exists(config.pose_guider_path): |
|
|
pose_guider.load_state_dict( |
|
|
torch.load(config.pose_guider_path, map_location="cpu"), |
|
|
) |
|
|
print("✅ Pose guider weights loaded") |
|
|
else: |
|
|
print(f"❌ Pose guider weights not found: {config.pose_guider_path}") |
|
|
|
|
|
except Exception as e: |
|
|
print(f"⚠️ Error loading model weights: {e}") |
|
|
raise |
|
|
|
|
|
self.pipe = Pose2VideoPipeline( |
|
|
vae=vae, |
|
|
image_encoder=image_enc, |
|
|
reference_unet=reference_unet, |
|
|
denoising_unet=denoising_unet, |
|
|
pose_guider=pose_guider, |
|
|
scheduler=scheduler, |
|
|
) |
|
|
self.pipe = self.pipe.to(device, dtype=weight_dtype) |
|
|
|
|
|
self.args = args |
|
|
|
|
|
|
|
|
mask_path = os.path.join(self.args.assets_dir, 'masks', 'alpha2.png') |
|
|
try: |
|
|
if os.path.exists(mask_path): |
|
|
self.mask_list = load_mask_list(mask_path) |
|
|
print("✅ Mask list loaded") |
|
|
else: |
|
|
self.mask_list = None |
|
|
print("⚠️ Mask file not found, using fallback masking") |
|
|
except Exception as e: |
|
|
self.mask_list = None |
|
|
print(f"⚠️ Failed to load mask: {e}") |
|
|
|
|
|
print("✅ MIMO model initialized successfully") |
|
|
|
|
|
except Exception as e: |
|
|
print(f"❌ Failed to initialize MIMO model: {e}") |
|
|
raise |
|
|
|
|
|
def load_template(self, template_path): |
|
|
"""Load template with error handling""" |
|
|
if not os.path.exists(template_path): |
|
|
raise FileNotFoundError(f"Template path does not exist: {template_path}") |
|
|
|
|
|
video_path = os.path.join(template_path, 'vid.mp4') |
|
|
pose_video_path = os.path.join(template_path, 'sdc.mp4') |
|
|
bk_video_path = os.path.join(template_path, 'bk.mp4') |
|
|
occ_video_path = os.path.join(template_path, 'occ.mp4') |
|
|
|
|
|
|
|
|
if not os.path.exists(video_path): |
|
|
raise FileNotFoundError(f"Required video file missing: {video_path}") |
|
|
if not os.path.exists(pose_video_path): |
|
|
raise FileNotFoundError(f"Required pose video missing: {pose_video_path}") |
|
|
|
|
|
if not os.path.exists(occ_video_path): |
|
|
occ_video_path = None |
|
|
|
|
|
if not os.path.exists(bk_video_path): |
|
|
print(f"⚠️ Background video not found: {bk_video_path}, will generate white background") |
|
|
bk_video_path = None |
|
|
|
|
|
config_file = os.path.join(template_path, 'config.json') |
|
|
if not os.path.exists(config_file): |
|
|
print(f"⚠️ Config file missing: {config_file}, using default settings") |
|
|
template_data = { |
|
|
'fps': 30, |
|
|
'time_crop': {'start_idx': 0, 'end_idx': 1000}, |
|
|
'frame_crop': {'start_idx': 0, 'end_idx': 1000}, |
|
|
'layer_recover': True |
|
|
} |
|
|
else: |
|
|
with open(config_file) as f: |
|
|
template_data = json.load(f) |
|
|
|
|
|
template_info = {} |
|
|
template_info['video_path'] = video_path |
|
|
template_info['pose_video_path'] = pose_video_path |
|
|
template_info['bk_video_path'] = bk_video_path |
|
|
template_info['occ_video_path'] = occ_video_path |
|
|
template_info['target_fps'] = template_data.get('fps', 30) |
|
|
template_info['time_crop'] = template_data.get('time_crop', {'start_idx': 0, 'end_idx': 1000}) |
|
|
template_info['frame_crop'] = template_data.get('frame_crop', {'start_idx': 0, 'end_idx': 1000}) |
|
|
template_info['layer_recover'] = template_data.get('layer_recover', True) |
|
|
|
|
|
return template_info |
|
|
|
|
|
def run(self, ref_image_pil, template_name): |
|
|
|
|
|
template_dir = os.path.join(self.args.assets_dir, 'video_template') |
|
|
template_path = os.path.join(template_dir, template_name) |
|
|
template_info = self.load_template(template_path) |
|
|
|
|
|
target_fps = template_info['target_fps'] |
|
|
video_path = template_info['video_path'] |
|
|
pose_video_path = template_info['pose_video_path'] |
|
|
bk_video_path = template_info['bk_video_path'] |
|
|
occ_video_path = template_info['occ_video_path'] |
|
|
|
|
|
|
|
|
source_image = np.array(ref_image_pil) |
|
|
source_image, mask = process_seg(source_image[..., ::-1]) |
|
|
source_image = source_image[..., ::-1] |
|
|
source_image = crop_img(source_image, mask) |
|
|
source_image, _ = pad_img(source_image, [255, 255, 255]) |
|
|
ref_image_pil = Image.fromarray(source_image) |
|
|
|
|
|
|
|
|
vid_images = read_frames(video_path) |
|
|
if bk_video_path is None: |
|
|
n_frame = len(vid_images) |
|
|
tw, th = vid_images[0].size |
|
|
bk_images = init_bk(n_frame, th, tw) |
|
|
else: |
|
|
bk_images = read_frames(bk_video_path) |
|
|
|
|
|
if occ_video_path is not None: |
|
|
occ_mask_images = read_frames(occ_video_path) |
|
|
print('load occ from %s' % occ_video_path) |
|
|
else: |
|
|
occ_mask_images = None |
|
|
print('no occ masks') |
|
|
|
|
|
pose_images = read_frames(pose_video_path) |
|
|
src_fps = get_fps(pose_video_path) |
|
|
|
|
|
start_idx, end_idx = template_info['time_crop']['start_idx'], template_info['time_crop']['end_idx'] |
|
|
start_idx = max(0, start_idx) |
|
|
end_idx = min(len(pose_images), end_idx) |
|
|
|
|
|
pose_images = pose_images[start_idx:end_idx] |
|
|
vid_images = vid_images[start_idx:end_idx] |
|
|
bk_images = bk_images[start_idx:end_idx] |
|
|
if occ_mask_images is not None: |
|
|
occ_mask_images = occ_mask_images[start_idx:end_idx] |
|
|
|
|
|
self.args.L = len(pose_images) |
|
|
max_n_frames = self.args.clip_length |
|
|
if self.args.L > max_n_frames: |
|
|
pose_images = pose_images[:max_n_frames] |
|
|
vid_images = vid_images[:max_n_frames] |
|
|
bk_images = bk_images[:max_n_frames] |
|
|
if occ_mask_images is not None: |
|
|
occ_mask_images = occ_mask_images[:max_n_frames] |
|
|
self.args.L = len(pose_images) |
|
|
|
|
|
bk_images_ori = bk_images.copy() |
|
|
vid_images_ori = vid_images.copy() |
|
|
|
|
|
overlay = 4 |
|
|
pose_images, vid_images, bk_images, bbox_clip, context_list, bbox_clip_list = crop_human_clip_auto_context( |
|
|
pose_images, vid_images, bk_images, overlay) |
|
|
|
|
|
clip_pad_list_context = [] |
|
|
clip_padv_list_context = [] |
|
|
pose_list_context = [] |
|
|
vid_bk_list_context = [] |
|
|
for frame_idx in range(len(pose_images)): |
|
|
pose_image_pil = pose_images[frame_idx] |
|
|
pose_image = np.array(pose_image_pil) |
|
|
pose_image, _ = pad_img(pose_image, color=[0, 0, 0]) |
|
|
pose_image_pil = Image.fromarray(pose_image) |
|
|
pose_list_context.append(pose_image_pil) |
|
|
|
|
|
vid_bk = bk_images[frame_idx] |
|
|
vid_bk = np.array(vid_bk) |
|
|
vid_bk, padding_v = pad_img(vid_bk, color=[255, 255, 255]) |
|
|
pad_h, pad_w, _ = vid_bk.shape |
|
|
clip_pad_list_context.append([pad_h, pad_w]) |
|
|
clip_padv_list_context.append(padding_v) |
|
|
vid_bk_list_context.append(Image.fromarray(vid_bk)) |
|
|
|
|
|
print('start to infer...') |
|
|
print(f'📊 Inference params: frames={len(pose_list_context)}, size={self.width}x{self.height}, steps={self.args.steps}') |
|
|
try: |
|
|
video = self.pipe( |
|
|
ref_image_pil, |
|
|
pose_list_context, |
|
|
vid_bk_list_context, |
|
|
self.width, |
|
|
self.height, |
|
|
len(pose_list_context), |
|
|
self.args.steps, |
|
|
self.args.cfg, |
|
|
generator=self.generator, |
|
|
).videos[0] |
|
|
print('✅ Inference completed successfully') |
|
|
except Exception as e: |
|
|
print(f'❌ Inference failed: {e}') |
|
|
import traceback |
|
|
traceback.print_exc() |
|
|
return None |
|
|
|
|
|
|
|
|
video_idx = 0 |
|
|
res_images = [None for _ in range(self.args.L)] |
|
|
for k, context in enumerate(context_list): |
|
|
start_i = context[0] |
|
|
bbox = bbox_clip_list[k] |
|
|
for i in context: |
|
|
bk_image_pil_ori = bk_images_ori[i] |
|
|
vid_image_pil_ori = vid_images_ori[i] |
|
|
if occ_mask_images is not None: |
|
|
occ_mask = occ_mask_images[i] |
|
|
else: |
|
|
occ_mask = None |
|
|
|
|
|
canvas = Image.new("RGB", bk_image_pil_ori.size, "white") |
|
|
|
|
|
pad_h, pad_w = clip_pad_list_context[video_idx] |
|
|
padding_v = clip_padv_list_context[video_idx] |
|
|
|
|
|
image = video[:, video_idx, :, :].permute(1, 2, 0).cpu().numpy() |
|
|
res_image_pil = Image.fromarray((image * 255).astype(np.uint8)) |
|
|
res_image_pil = res_image_pil.resize((pad_w, pad_h)) |
|
|
|
|
|
top, bottom, left, right = padding_v |
|
|
res_image_pil = res_image_pil.crop((left, top, pad_w - right, pad_h - bottom)) |
|
|
|
|
|
w_min, w_max, h_min, h_max = bbox |
|
|
canvas.paste(res_image_pil, (w_min, h_min)) |
|
|
|
|
|
mask_full = np.zeros((bk_image_pil_ori.size[1], bk_image_pil_ori.size[0]), dtype=np.float32) |
|
|
res_image = np.array(canvas) |
|
|
bk_image = np.array(bk_image_pil_ori) |
|
|
|
|
|
mask = get_mask(self.mask_list, bbox, bk_image_pil_ori) |
|
|
mask = cv2.resize(mask, res_image_pil.size, interpolation=cv2.INTER_AREA) |
|
|
mask_full[h_min:h_min + mask.shape[0], w_min:w_min + mask.shape[1]] = mask |
|
|
|
|
|
res_image = res_image * mask_full[:, :, np.newaxis] + bk_image * (1 - mask_full[:, :, np.newaxis]) |
|
|
|
|
|
if occ_mask is not None: |
|
|
vid_image = np.array(vid_image_pil_ori) |
|
|
occ_mask = np.array(occ_mask)[:, :, 0].astype(np.uint8) |
|
|
occ_mask = occ_mask / 255.0 |
|
|
res_image = res_image * (1 - occ_mask[:, :, np.newaxis]) + vid_image * occ_mask[:, :, |
|
|
np.newaxis] |
|
|
if res_images[i] is None: |
|
|
res_images[i] = res_image |
|
|
else: |
|
|
factor = (i - start_i + 1) / (overlay + 1) |
|
|
res_images[i] = res_images[i] * (1 - factor) + res_image * factor |
|
|
res_images[i] = res_images[i].astype(np.uint8) |
|
|
|
|
|
video_idx = video_idx + 1 |
|
|
return res_images |
|
|
|
|
|
|
|
|
class WebApp(): |
|
|
def __init__(self, debug_mode=False): |
|
|
self.args_base = { |
|
|
"device": "cuda", |
|
|
"output_dir": "output_demo", |
|
|
"img": None, |
|
|
"pos_prompt": '', |
|
|
"motion": "sports_basketball_gym", |
|
|
"motion_dir": "./assets/test_video_trunc", |
|
|
} |
|
|
|
|
|
self.args_input = {} |
|
|
self.gr_motion = list(MOTION_TRIGGER_WORD.keys()) |
|
|
|
|
|
|
|
|
self.gtag = os.environ.get('GTag') |
|
|
|
|
|
self.ga_script = f""" |
|
|
<script async src="https://www.googletagmanager.com/gtag/js?id={self.gtag}"></script> |
|
|
""" |
|
|
self.ga_load = f""" |
|
|
function() {{ |
|
|
window.dataLayer = window.dataLayer || []; |
|
|
function gtag(){{dataLayer.push(arguments);}} |
|
|
gtag('js', new Date()); |
|
|
|
|
|
gtag('config', '{self.gtag}'); |
|
|
}} |
|
|
""" |
|
|
|
|
|
|
|
|
try: |
|
|
self.model = MIMO() |
|
|
print("✅ MIMO model loaded successfully") |
|
|
except Exception as e: |
|
|
print(f"❌ Failed to load MIMO model: {e}") |
|
|
self.model = None |
|
|
|
|
|
self.debug_mode = debug_mode |
|
|
|
|
|
def title(self): |
|
|
|
|
|
gr.HTML( |
|
|
""" |
|
|
<div style="display: flex; justify-content: center; align-items: center; text-align: center;"> |
|
|
<a href="https://menyifang.github.io/projects/En3D/index.html" style="margin-right: 20px; text-decoration: none; display: flex; align-items: center;"> |
|
|
</a> |
|
|
<div> |
|
|
<h1 >MIMO Demo</h1> |
|
|
|
|
|
</div> |
|
|
</div> |
|
|
</div> |
|
|
""" |
|
|
) |
|
|
|
|
|
def get_template(self, num_cols=3): |
|
|
self.args_input['motion'] = gr.State('sports_basketball_gym') |
|
|
num_cols = 2 |
|
|
|
|
|
|
|
|
thumb_dir = "./assets/thumbnails" |
|
|
gallery_items = [] |
|
|
for motion in self.gr_motion: |
|
|
thumb_path = os.path.join(thumb_dir, f"{motion}.jpg") |
|
|
if os.path.exists(thumb_path): |
|
|
gallery_items.append((thumb_path, motion)) |
|
|
else: |
|
|
|
|
|
print(f"⚠️ Thumbnail not found: {thumb_path}") |
|
|
|
|
|
lora_gallery = gr.Gallery(label='Motion Templates', columns=num_cols, height=500, |
|
|
value=gallery_items, |
|
|
show_label=True) |
|
|
|
|
|
lora_gallery.select(self._update_selection, inputs=[], outputs=[self.args_input['motion']]) |
|
|
print(self.args_input['motion']) |
|
|
|
|
|
def _update_selection(self, selected_state: gr.SelectData): |
|
|
return self.gr_motion[selected_state.index] |
|
|
|
|
|
def run_process(self, *values): |
|
|
if self.model is None: |
|
|
print("❌ MIMO model not loaded. Please check dependencies and model weights.") |
|
|
return None |
|
|
|
|
|
try: |
|
|
gr_args = self.args_base.copy() |
|
|
print(self.args_input.keys()) |
|
|
for k, v in zip(list(self.args_input.keys()), values): |
|
|
gr_args[k] = v |
|
|
|
|
|
ref_image_pil = gr_args['img'] |
|
|
if ref_image_pil is None: |
|
|
print("⚠️ Please upload an image first.") |
|
|
return None |
|
|
|
|
|
template_name = gr_args['motion'] |
|
|
print('template_name:', template_name) |
|
|
|
|
|
save_dir = 'output' |
|
|
if not os.path.exists(save_dir): |
|
|
os.makedirs(save_dir) |
|
|
|
|
|
case = datetime.now().strftime("%Y%m%d%H%M%S") |
|
|
outpath = f"{save_dir}/{case}.mp4" |
|
|
|
|
|
res = self.model.run(ref_image_pil, template_name) |
|
|
if not res: |
|
|
print("❌ Video generation failed. Please check template and try again.") |
|
|
return None |
|
|
|
|
|
imageio.mimsave(outpath, res, fps=30, quality=8, macro_block_size=1) |
|
|
print('save to %s' % outpath) |
|
|
|
|
|
return outpath |
|
|
|
|
|
except Exception as e: |
|
|
print(f"❌ Error during processing: {e}") |
|
|
|
|
|
|
|
|
return None |
|
|
|
|
|
def preset_library(self): |
|
|
with gr.Blocks() as demo: |
|
|
with gr.Accordion(label="🧭 Guidance:", open=True, elem_id="accordion"): |
|
|
with gr.Row(equal_height=True): |
|
|
gr.Markdown(""" |
|
|
- ⭐️ <b>step1:</b>Upload a character image or select one from the examples |
|
|
- ⭐️ <b>step2:</b>Choose a motion template from the gallery |
|
|
- ⭐️ <b>step3:</b>Click "Run" to generate the animation |
|
|
- <b>Note: </b> The input character image should be full-body, front-facing, no occlusion, no handheld objects |
|
|
""") |
|
|
|
|
|
with gr.Row(): |
|
|
img_input = gr.Image(label='Input image', type="pil", elem_id="fixed_size_img") |
|
|
self.args_input['img'] = img_input |
|
|
|
|
|
with gr.Column(): |
|
|
self.get_template(num_cols=3) |
|
|
submit_btn_load3d = gr.Button("Run", variant='primary') |
|
|
with gr.Column(scale=1): |
|
|
res_vid = gr.Video(format="mp4", label="Generated Result", autoplay=True, elem_id="fixed_size_img") |
|
|
|
|
|
submit_btn_load3d.click(self.run_process, |
|
|
inputs=list(self.args_input.values()), |
|
|
outputs=[res_vid], |
|
|
scroll_to_output=True, |
|
|
) |
|
|
|
|
|
|
|
|
example_images = [] |
|
|
possible_examples = [ |
|
|
'./assets/test_image/sugar.jpg', |
|
|
'./assets/test_image/ouwen1.png', |
|
|
'./assets/test_image/actorhq_A1S1.png', |
|
|
'./assets/test_image/actorhq_A7S1.png', |
|
|
'./assets/test_image/cartoon1.png', |
|
|
'./assets/test_image/cartoon2.png', |
|
|
'./assets/test_image/sakura.png', |
|
|
'./assets/test_image/kakashi.png', |
|
|
'./assets/test_image/sasuke.png', |
|
|
'./assets/test_image/avatar.jpg', |
|
|
] |
|
|
|
|
|
for img_path in possible_examples: |
|
|
if os.path.exists(img_path): |
|
|
example_images.append([img_path]) |
|
|
|
|
|
if example_images: |
|
|
gr.Examples(examples=example_images, |
|
|
inputs=[img_input], |
|
|
examples_per_page=20, label="Examples", elem_id="examples", |
|
|
) |
|
|
else: |
|
|
gr.Markdown("⚠️ No example images found. Please upload your own image.") |
|
|
|
|
|
def ui(self): |
|
|
with gr.Blocks(css=css_style) as demo: |
|
|
self.title() |
|
|
self.preset_library() |
|
|
demo.load(None, js=self.ga_load) |
|
|
|
|
|
return demo |
|
|
|
|
|
|
|
|
app = WebApp(debug_mode=False) |
|
|
demo = app.ui() |
|
|
|
|
|
if __name__ == "__main__": |
|
|
demo.queue(max_size=100) |
|
|
|
|
|
demo.launch(server_name="0.0.0.0", server_port=7860, share=False) |
|
|
|