mimo-1.0 / app_local.py
minhho's picture
Clean deployment: All fixes without binary files
6f2c7f0
raw
history blame
24.7 kB
import argparse
import os
from datetime import datetime
from pathlib import Path
from typing import List
import av
import numpy as np
import torch
import torchvision
from diffusers import AutoencoderKL, DDIMScheduler
from omegaconf import OmegaConf
from PIL import Image
from transformers import CLIPVisionModelWithProjection
from src.models.pose_guider import PoseGuider
from src.models.unet_2d_condition import UNet2DConditionModel
from src.models.unet_3d_edit_bkfill import UNet3DConditionModel
from src.pipelines.pipeline_pose2vid_long_edit_bkfill_roiclip import Pose2VideoPipeline
from src.utils.util import get_fps, read_frames
import cv2
from tools.human_segmenter import human_segmenter
import imageio
from tools.util import all_file, load_mask_list, crop_img, pad_img, crop_human_clip_auto_context, get_mask, \
refine_img_prepross, init_bk
import gradio as gr
import json
MOTION_TRIGGER_WORD = {
'sports_basketball_gym': [],
'sports_nba_pass': [],
'sports_nba_dunk': [],
'movie_BruceLee1': [],
'shorts_kungfu_match1': [],
'shorts_kungfu_desert1': [],
'parkour_climbing': [],
'dance_indoor_1': [],
'syn_basketball_06_13': [],
'syn_dancing2_00093_irish_dance': [],
'syn_football_10_05': [],
}
css_style = "#fixed_size_img {height: 500px;}"
seg_path = './assets/matting_human.pb'
try:
if os.path.exists(seg_path):
segmenter = human_segmenter(model_path=seg_path)
print("✅ Human segmenter loaded successfully")
else:
segmenter = None
print("⚠️ Segmenter model not found, using fallback segmentation")
except Exception as e:
segmenter = None
print(f"⚠️ Failed to load segmenter: {e}, using fallback")
def process_seg(img):
"""Process image segmentation with fallback"""
if segmenter is not None:
try:
rgba = segmenter.run(img)
mask = rgba[:, :, 3]
color = rgba[:, :, :3]
alpha = mask / 255
bk = np.ones_like(color) * 255
color = color * alpha[:, :, np.newaxis] + bk * (1 - alpha[:, :, np.newaxis])
color = color.astype(np.uint8)
return color, mask
except Exception as e:
print(f"⚠️ Segmentation failed: {e}, using simple crop")
# Fallback: return original image with simple center crop
h, w = img.shape[:2]
margin = min(h, w) // 10
mask = np.zeros((h, w), dtype=np.uint8)
mask[margin:-margin, margin:-margin] = 255
return img, mask
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default='./configs/prompts/animation_edit.yaml')
parser.add_argument("-W", type=int, default=512)
parser.add_argument("-H", type=int, default=512)
parser.add_argument("-L", type=int, default=64)
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--cfg", type=float, default=3.5)
parser.add_argument("--steps", type=int, default=10)
parser.add_argument("--fps", type=int)
parser.add_argument("--assets_dir", type=str, default='./assets')
parser.add_argument("--ref_pad", type=int, default=1)
parser.add_argument("--use_bk", type=int, default=1)
parser.add_argument("--clip_length", type=int, default=16)
parser.add_argument("--MAX_FRAME_NUM", type=int, default=150)
args = parser.parse_args()
return args
class MIMO():
def __init__(self, debug_mode=False):
try:
args = parse_args()
config = OmegaConf.load(args.config)
# Check if running on CPU or GPU
device = "cuda" if torch.cuda.is_available() else "cpu"
if device == "cpu":
print("⚠️ CUDA not available, running on CPU (will be slow)")
weight_dtype = torch.float32
else:
if config.weight_dtype == "fp16":
weight_dtype = torch.float16
else:
weight_dtype = torch.float32
print(f"✅ Using device: {device} with dtype: {weight_dtype}")
vae = AutoencoderKL.from_pretrained(
config.pretrained_vae_path,
).to(device, dtype=weight_dtype)
reference_unet = UNet2DConditionModel.from_pretrained(
config.pretrained_base_model_path,
subfolder="unet",
).to(dtype=weight_dtype, device=device)
inference_config_path = config.inference_config
infer_config = OmegaConf.load(inference_config_path)
denoising_unet = UNet3DConditionModel.from_pretrained_2d(
config.pretrained_base_model_path,
config.motion_module_path,
subfolder="unet",
unet_additional_kwargs=infer_config.unet_additional_kwargs,
).to(dtype=weight_dtype, device=device)
pose_guider = PoseGuider(320, conditioning_channels=3, block_out_channels=(16, 32, 96, 256)).to(
dtype=weight_dtype, device=device
)
image_enc = CLIPVisionModelWithProjection.from_pretrained(
config.image_encoder_path
).to(dtype=weight_dtype, device=device)
sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs)
scheduler = DDIMScheduler(**sched_kwargs)
self.generator = torch.manual_seed(args.seed)
self.width, self.height = args.W, args.H
# load pretrained weights with error handling
try:
if os.path.exists(config.denoising_unet_path):
denoising_unet.load_state_dict(
torch.load(config.denoising_unet_path, map_location="cpu"),
strict=False,
)
print("✅ Denoising UNet weights loaded")
else:
print(f"❌ Denoising UNet weights not found: {config.denoising_unet_path}")
if os.path.exists(config.reference_unet_path):
reference_unet.load_state_dict(
torch.load(config.reference_unet_path, map_location="cpu"),
)
print("✅ Reference UNet weights loaded")
else:
print(f"❌ Reference UNet weights not found: {config.reference_unet_path}")
if os.path.exists(config.pose_guider_path):
pose_guider.load_state_dict(
torch.load(config.pose_guider_path, map_location="cpu"),
)
print("✅ Pose guider weights loaded")
else:
print(f"❌ Pose guider weights not found: {config.pose_guider_path}")
except Exception as e:
print(f"⚠️ Error loading model weights: {e}")
raise
self.pipe = Pose2VideoPipeline(
vae=vae,
image_encoder=image_enc,
reference_unet=reference_unet,
denoising_unet=denoising_unet,
pose_guider=pose_guider,
scheduler=scheduler,
)
self.pipe = self.pipe.to(device, dtype=weight_dtype)
self.args = args
# load mask with error handling
mask_path = os.path.join(self.args.assets_dir, 'masks', 'alpha2.png')
try:
if os.path.exists(mask_path):
self.mask_list = load_mask_list(mask_path)
print("✅ Mask list loaded")
else:
self.mask_list = None
print("⚠️ Mask file not found, using fallback masking")
except Exception as e:
self.mask_list = None
print(f"⚠️ Failed to load mask: {e}")
print("✅ MIMO model initialized successfully")
except Exception as e:
print(f"❌ Failed to initialize MIMO model: {e}")
raise
def load_template(self, template_path):
"""Load template with error handling"""
if not os.path.exists(template_path):
raise FileNotFoundError(f"Template path does not exist: {template_path}")
video_path = os.path.join(template_path, 'vid.mp4')
pose_video_path = os.path.join(template_path, 'sdc.mp4')
bk_video_path = os.path.join(template_path, 'bk.mp4')
occ_video_path = os.path.join(template_path, 'occ.mp4')
# Check essential files
if not os.path.exists(video_path):
raise FileNotFoundError(f"Required video file missing: {video_path}")
if not os.path.exists(pose_video_path):
raise FileNotFoundError(f"Required pose video missing: {pose_video_path}")
if not os.path.exists(occ_video_path):
occ_video_path = None
if not os.path.exists(bk_video_path):
print(f"⚠️ Background video not found: {bk_video_path}, will generate white background")
bk_video_path = None
config_file = os.path.join(template_path, 'config.json')
if not os.path.exists(config_file):
print(f"⚠️ Config file missing: {config_file}, using default settings")
template_data = {
'fps': 30,
'time_crop': {'start_idx': 0, 'end_idx': 1000},
'frame_crop': {'start_idx': 0, 'end_idx': 1000},
'layer_recover': True
}
else:
with open(config_file) as f:
template_data = json.load(f)
template_info = {}
template_info['video_path'] = video_path
template_info['pose_video_path'] = pose_video_path
template_info['bk_video_path'] = bk_video_path
template_info['occ_video_path'] = occ_video_path
template_info['target_fps'] = template_data.get('fps', 30)
template_info['time_crop'] = template_data.get('time_crop', {'start_idx': 0, 'end_idx': 1000})
template_info['frame_crop'] = template_data.get('frame_crop', {'start_idx': 0, 'end_idx': 1000})
template_info['layer_recover'] = template_data.get('layer_recover', True)
return template_info
def run(self, ref_image_pil, template_name):
template_dir = os.path.join(self.args.assets_dir, 'video_template')
template_path = os.path.join(template_dir, template_name)
template_info = self.load_template(template_path)
target_fps = template_info['target_fps']
video_path = template_info['video_path']
pose_video_path = template_info['pose_video_path']
bk_video_path = template_info['bk_video_path']
occ_video_path = template_info['occ_video_path']
# ref_image_pil = Image.open(ref_img_path).convert('RGB')
source_image = np.array(ref_image_pil)
source_image, mask = process_seg(source_image[..., ::-1])
source_image = source_image[..., ::-1]
source_image = crop_img(source_image, mask)
source_image, _ = pad_img(source_image, [255, 255, 255])
ref_image_pil = Image.fromarray(source_image)
# load tgt
vid_images = read_frames(video_path)
if bk_video_path is None:
n_frame = len(vid_images)
tw, th = vid_images[0].size
bk_images = init_bk(n_frame, th, tw) # Fixed parameter order: n_frame, height, width
else:
bk_images = read_frames(bk_video_path)
if occ_video_path is not None:
occ_mask_images = read_frames(occ_video_path)
print('load occ from %s' % occ_video_path)
else:
occ_mask_images = None
print('no occ masks')
pose_images = read_frames(pose_video_path)
src_fps = get_fps(pose_video_path)
start_idx, end_idx = template_info['time_crop']['start_idx'], template_info['time_crop']['end_idx']
start_idx = max(0, start_idx)
end_idx = min(len(pose_images), end_idx)
pose_images = pose_images[start_idx:end_idx]
vid_images = vid_images[start_idx:end_idx]
bk_images = bk_images[start_idx:end_idx]
if occ_mask_images is not None:
occ_mask_images = occ_mask_images[start_idx:end_idx]
self.args.L = len(pose_images)
max_n_frames = self.args.clip_length # Use clip_length instead of MAX_FRAME_NUM for faster inference
if self.args.L > max_n_frames:
pose_images = pose_images[:max_n_frames]
vid_images = vid_images[:max_n_frames]
bk_images = bk_images[:max_n_frames]
if occ_mask_images is not None:
occ_mask_images = occ_mask_images[:max_n_frames]
self.args.L = len(pose_images)
bk_images_ori = bk_images.copy()
vid_images_ori = vid_images.copy()
overlay = 4
pose_images, vid_images, bk_images, bbox_clip, context_list, bbox_clip_list = crop_human_clip_auto_context(
pose_images, vid_images, bk_images, overlay)
clip_pad_list_context = []
clip_padv_list_context = []
pose_list_context = []
vid_bk_list_context = []
for frame_idx in range(len(pose_images)):
pose_image_pil = pose_images[frame_idx]
pose_image = np.array(pose_image_pil)
pose_image, _ = pad_img(pose_image, color=[0, 0, 0])
pose_image_pil = Image.fromarray(pose_image)
pose_list_context.append(pose_image_pil)
vid_bk = bk_images[frame_idx]
vid_bk = np.array(vid_bk)
vid_bk, padding_v = pad_img(vid_bk, color=[255, 255, 255])
pad_h, pad_w, _ = vid_bk.shape
clip_pad_list_context.append([pad_h, pad_w])
clip_padv_list_context.append(padding_v)
vid_bk_list_context.append(Image.fromarray(vid_bk))
print('start to infer...')
print(f'📊 Inference params: frames={len(pose_list_context)}, size={self.width}x{self.height}, steps={self.args.steps}')
try:
video = self.pipe(
ref_image_pil,
pose_list_context,
vid_bk_list_context,
self.width,
self.height,
len(pose_list_context),
self.args.steps,
self.args.cfg,
generator=self.generator,
).videos[0]
print('✅ Inference completed successfully')
except Exception as e:
print(f'❌ Inference failed: {e}')
import traceback
traceback.print_exc()
return None
# post-process video
video_idx = 0
res_images = [None for _ in range(self.args.L)]
for k, context in enumerate(context_list):
start_i = context[0]
bbox = bbox_clip_list[k]
for i in context:
bk_image_pil_ori = bk_images_ori[i]
vid_image_pil_ori = vid_images_ori[i]
if occ_mask_images is not None:
occ_mask = occ_mask_images[i]
else:
occ_mask = None
canvas = Image.new("RGB", bk_image_pil_ori.size, "white")
pad_h, pad_w = clip_pad_list_context[video_idx]
padding_v = clip_padv_list_context[video_idx]
image = video[:, video_idx, :, :].permute(1, 2, 0).cpu().numpy()
res_image_pil = Image.fromarray((image * 255).astype(np.uint8))
res_image_pil = res_image_pil.resize((pad_w, pad_h))
top, bottom, left, right = padding_v
res_image_pil = res_image_pil.crop((left, top, pad_w - right, pad_h - bottom))
w_min, w_max, h_min, h_max = bbox
canvas.paste(res_image_pil, (w_min, h_min))
mask_full = np.zeros((bk_image_pil_ori.size[1], bk_image_pil_ori.size[0]), dtype=np.float32)
res_image = np.array(canvas)
bk_image = np.array(bk_image_pil_ori)
mask = get_mask(self.mask_list, bbox, bk_image_pil_ori)
mask = cv2.resize(mask, res_image_pil.size, interpolation=cv2.INTER_AREA)
mask_full[h_min:h_min + mask.shape[0], w_min:w_min + mask.shape[1]] = mask
res_image = res_image * mask_full[:, :, np.newaxis] + bk_image * (1 - mask_full[:, :, np.newaxis])
if occ_mask is not None:
vid_image = np.array(vid_image_pil_ori)
occ_mask = np.array(occ_mask)[:, :, 0].astype(np.uint8) # [0,255]
occ_mask = occ_mask / 255.0
res_image = res_image * (1 - occ_mask[:, :, np.newaxis]) + vid_image * occ_mask[:, :,
np.newaxis]
if res_images[i] is None:
res_images[i] = res_image
else:
factor = (i - start_i + 1) / (overlay + 1)
res_images[i] = res_images[i] * (1 - factor) + res_image * factor
res_images[i] = res_images[i].astype(np.uint8)
video_idx = video_idx + 1
return res_images
class WebApp():
def __init__(self, debug_mode=False):
self.args_base = {
"device": "cuda",
"output_dir": "output_demo",
"img": None,
"pos_prompt": '',
"motion": "sports_basketball_gym",
"motion_dir": "./assets/test_video_trunc",
}
self.args_input = {} # for gr.components only
self.gr_motion = list(MOTION_TRIGGER_WORD.keys())
# fun fact: google analytics doesn't work in this space currently
self.gtag = os.environ.get('GTag')
self.ga_script = f"""
<script async src="https://www.googletagmanager.com/gtag/js?id={self.gtag}"></script>
"""
self.ga_load = f"""
function() {{
window.dataLayer = window.dataLayer || [];
function gtag(){{dataLayer.push(arguments);}}
gtag('js', new Date());
gtag('config', '{self.gtag}');
}}
"""
# # pre-download base model for better user experience
try:
self.model = MIMO()
print("✅ MIMO model loaded successfully")
except Exception as e:
print(f"❌ Failed to load MIMO model: {e}")
self.model = None
self.debug_mode = debug_mode # turn off clip interrogator when debugging for faster building speed
def title(self):
gr.HTML(
"""
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<a href="https://menyifang.github.io/projects/En3D/index.html" style="margin-right: 20px; text-decoration: none; display: flex; align-items: center;">
</a>
<div>
<h1 >MIMO Demo</h1>
</div>
</div>
</div>
"""
)
def get_template(self, num_cols=3):
self.args_input['motion'] = gr.State('sports_basketball_gym')
num_cols = 2
# Use thumbnails instead of videos for gallery display
thumb_dir = "./assets/thumbnails"
gallery_items = []
for motion in self.gr_motion:
thumb_path = os.path.join(thumb_dir, f"{motion}.jpg")
if os.path.exists(thumb_path):
gallery_items.append((thumb_path, motion))
else:
# Fallback to a placeholder or skip
print(f"⚠️ Thumbnail not found: {thumb_path}")
lora_gallery = gr.Gallery(label='Motion Templates', columns=num_cols, height=500,
value=gallery_items,
show_label=True)
lora_gallery.select(self._update_selection, inputs=[], outputs=[self.args_input['motion']])
print(self.args_input['motion'])
def _update_selection(self, selected_state: gr.SelectData):
return self.gr_motion[selected_state.index]
def run_process(self, *values):
if self.model is None:
print("❌ MIMO model not loaded. Please check dependencies and model weights.")
return None
try:
gr_args = self.args_base.copy()
print(self.args_input.keys())
for k, v in zip(list(self.args_input.keys()), values):
gr_args[k] = v
ref_image_pil = gr_args['img'] # pil image
if ref_image_pil is None:
print("⚠️ Please upload an image first.")
return None
template_name = gr_args['motion']
print('template_name:', template_name)
save_dir = 'output'
if not os.path.exists(save_dir):
os.makedirs(save_dir)
# generate uuid
case = datetime.now().strftime("%Y%m%d%H%M%S")
outpath = f"{save_dir}/{case}.mp4"
res = self.model.run(ref_image_pil, template_name)
if not res:
print("❌ Video generation failed. Please check template and try again.")
return None
imageio.mimsave(outpath, res, fps=30, quality=8, macro_block_size=1)
print('save to %s' % outpath)
return outpath
except Exception as e:
print(f"❌ Error during processing: {e}")
# Don't return error string - Gradio Video expects file path or None
# Create a simple error video or return None
return None
def preset_library(self):
with gr.Blocks() as demo:
with gr.Accordion(label="🧭 Guidance:", open=True, elem_id="accordion"):
with gr.Row(equal_height=True):
gr.Markdown("""
- ⭐️ <b>step1:</b>Upload a character image or select one from the examples
- ⭐️ <b>step2:</b>Choose a motion template from the gallery
- ⭐️ <b>step3:</b>Click "Run" to generate the animation
- <b>Note: </b> The input character image should be full-body, front-facing, no occlusion, no handheld objects
""")
with gr.Row():
img_input = gr.Image(label='Input image', type="pil", elem_id="fixed_size_img")
self.args_input['img'] = img_input
with gr.Column():
self.get_template(num_cols=3)
submit_btn_load3d = gr.Button("Run", variant='primary')
with gr.Column(scale=1):
res_vid = gr.Video(format="mp4", label="Generated Result", autoplay=True, elem_id="fixed_size_img")
submit_btn_load3d.click(self.run_process,
inputs=list(self.args_input.values()),
outputs=[res_vid],
scroll_to_output=True,
)
# Create examples list with only existing files
example_images = []
possible_examples = [
'./assets/test_image/sugar.jpg',
'./assets/test_image/ouwen1.png',
'./assets/test_image/actorhq_A1S1.png',
'./assets/test_image/actorhq_A7S1.png',
'./assets/test_image/cartoon1.png',
'./assets/test_image/cartoon2.png',
'./assets/test_image/sakura.png',
'./assets/test_image/kakashi.png',
'./assets/test_image/sasuke.png',
'./assets/test_image/avatar.jpg',
]
for img_path in possible_examples:
if os.path.exists(img_path):
example_images.append([img_path])
if example_images:
gr.Examples(examples=example_images,
inputs=[img_input],
examples_per_page=20, label="Examples", elem_id="examples",
)
else:
gr.Markdown("⚠️ No example images found. Please upload your own image.")
def ui(self):
with gr.Blocks(css=css_style) as demo:
self.title()
self.preset_library()
demo.load(None, js=self.ga_load)
return demo
app = WebApp(debug_mode=False)
demo = app.ui()
if __name__ == "__main__":
demo.queue(max_size=100)
# For Hugging Face Spaces
demo.launch(server_name="0.0.0.0", server_port=7860, share=False)