mimo-1.0 / app_hf.py
minhho's picture
Clean deployment: All fixes without binary files
6f2c7f0
raw
history blame
25.6 kB
import argparse
import os
from datetime import datetime
from pathlib import Path
from typing import List
import av
import numpy as np
import torch
import torchvision
from diffusers import AutoencoderKL, DDIMScheduler
from omegaconf import OmegaConf
from PIL import Image
from transformers import CLIPVisionModelWithProjection
from src.models.pose_guider import PoseGuider
from src.models.unet_2d_condition import UNet2DConditionModel
from src.models.unet_3d_edit_bkfill import UNet3DConditionModel
from src.pipelines.pipeline_pose2vid_long_edit_bkfill_roiclip import Pose2VideoPipeline
from src.utils.util import get_fps, read_frames
import cv2
from tools.human_segmenter import human_segmenter
import imageio
from tools.util import all_file, load_mask_list, crop_img, pad_img, crop_human_clip_auto_context, get_mask, \
refine_img_prepross
import gradio as gr
import json
from huggingface_hub import snapshot_download
import spaces
MOTION_TRIGGER_WORD = {
'sports_basketball_gym': [],
'sports_nba_pass': [],
'sports_nba_dunk': [],
'movie_BruceLee1': [],
'shorts_kungfu_match1': [],
'shorts_kungfu_desert1': [],
'parkour_climbing': [],
'dance_indoor_1': [],
}
css_style = "#fixed_size_img {height: 500px;}"
def download_models():
"""Download required models from Hugging Face"""
print("Checking and downloading models...")
# Download main MIMO weights
if not os.path.exists('./pretrained_weights/denoising_unet.pth'):
print("Downloading MIMO model weights...")
try:
snapshot_download(
repo_id='menyifang/MIMO',
cache_dir='./pretrained_weights',
local_dir='./pretrained_weights',
local_dir_use_symlinks=False
)
except Exception as e:
print(f"Error downloading MIMO weights: {e}")
# Fallback to ModelScope if available
try:
from modelscope import snapshot_download as ms_snapshot_download
ms_snapshot_download(
model_id='iic/MIMO',
cache_dir='./pretrained_weights',
local_dir='./pretrained_weights'
)
except Exception as e2:
print(f"Error downloading from ModelScope: {e2}")
# Download base models if not present
if not os.path.exists('./pretrained_weights/stable-diffusion-v1-5'):
print("Downloading Stable Diffusion v1.5...")
try:
snapshot_download(
repo_id='runwayml/stable-diffusion-v1-5',
cache_dir='./pretrained_weights',
local_dir='./pretrained_weights/stable-diffusion-v1-5',
local_dir_use_symlinks=False
)
except Exception as e:
print(f"Error downloading SD v1.5: {e}")
if not os.path.exists('./pretrained_weights/sd-vae-ft-mse'):
print("Downloading VAE...")
try:
snapshot_download(
repo_id='stabilityai/sd-vae-ft-mse',
cache_dir='./pretrained_weights',
local_dir='./pretrained_weights/sd-vae-ft-mse',
local_dir_use_symlinks=False
)
except Exception as e:
print(f"Error downloading VAE: {e}")
if not os.path.exists('./pretrained_weights/image_encoder'):
print("Downloading Image Encoder...")
try:
snapshot_download(
repo_id='lambdalabs/sd-image-variations-diffusers',
cache_dir='./pretrained_weights',
local_dir='./pretrained_weights/image_encoder',
local_dir_use_symlinks=False,
subfolder='image_encoder'
)
except Exception as e:
print(f"Error downloading image encoder: {e}")
# Download assets if not present
if not os.path.exists('./assets'):
print("Downloading assets...")
# This would need to be uploaded to HF or provided another way
# For now, create minimal required structure
os.makedirs('./assets/masks', exist_ok=True)
os.makedirs('./assets/test_image', exist_ok=True)
os.makedirs('./assets/video_template', exist_ok=True)
def init_bk(n_frame, tw, th):
"""Initialize background frames"""
bk_images = []
for _ in range(n_frame):
bk_img = Image.new('RGB', (tw, th), color='white')
bk_images.append(bk_img)
return bk_images
# Initialize segmenter with error handling
seg_path = './assets/matting_human.pb'
try:
segmenter = human_segmenter(model_path=seg_path) if os.path.exists(seg_path) else None
except Exception as e:
print(f"Warning: Could not initialize segmenter: {e}")
segmenter = None
def process_seg(img):
"""Process image segmentation with fallback"""
if segmenter is None:
# Fallback: return original image with dummy mask
img_array = np.array(img) if isinstance(img, Image.Image) else img
mask = np.ones((img_array.shape[0], img_array.shape[1]), dtype=np.uint8) * 255
return img_array, mask
try:
rgba = segmenter.run(img)
mask = rgba[:, :, 3]
color = rgba[:, :, :3]
alpha = mask / 255
bk = np.ones_like(color) * 255
color = color * alpha[:, :, np.newaxis] + bk * (1 - alpha[:, :, np.newaxis])
color = color.astype(np.uint8)
return color, mask
except Exception as e:
print(f"Error in segmentation: {e}")
# Fallback to original image
img_array = np.array(img) if isinstance(img, Image.Image) else img
mask = np.ones((img_array.shape[0], img_array.shape[1]), dtype=np.uint8) * 255
return img_array, mask
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default='./configs/prompts/animation_edit.yaml')
parser.add_argument("-W", type=int, default=784)
parser.add_argument("-H", type=int, default=784)
parser.add_argument("-L", type=int, default=64)
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--cfg", type=float, default=3.5)
parser.add_argument("--steps", type=int, default=25)
parser.add_argument("--fps", type=int)
parser.add_argument("--assets_dir", type=str, default='./assets')
parser.add_argument("--ref_pad", type=int, default=1)
parser.add_argument("--use_bk", type=int, default=1)
parser.add_argument("--clip_length", type=int, default=32)
parser.add_argument("--MAX_FRAME_NUM", type=int, default=150)
args = parser.parse_args()
return args
class MIMO():
def __init__(self, debug_mode=False):
try:
# Download models first
download_models()
args = parse_args()
config = OmegaConf.load(args.config)
if config.weight_dtype == "fp16":
weight_dtype = torch.float16
else:
weight_dtype = torch.float32
# Check CUDA availability
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
if device == "cpu":
weight_dtype = torch.float32
print("Warning: Running on CPU, performance may be slow")
vae = AutoencoderKL.from_pretrained(
config.pretrained_vae_path,
).to(device, dtype=weight_dtype)
reference_unet = UNet2DConditionModel.from_pretrained(
config.pretrained_base_model_path,
subfolder="unet",
).to(dtype=weight_dtype, device=device)
inference_config_path = config.inference_config
infer_config = OmegaConf.load(inference_config_path)
denoising_unet = UNet3DConditionModel.from_pretrained_2d(
config.pretrained_base_model_path,
config.motion_module_path,
subfolder="unet",
unet_additional_kwargs=infer_config.unet_additional_kwargs,
).to(dtype=weight_dtype, device=device)
pose_guider = PoseGuider(320, conditioning_channels=3, block_out_channels=(16, 32, 96, 256)).to(
dtype=weight_dtype, device=device
)
image_enc = CLIPVisionModelWithProjection.from_pretrained(
config.image_encoder_path
).to(dtype=weight_dtype, device=device)
sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs)
scheduler = DDIMScheduler(**sched_kwargs)
self.generator = torch.manual_seed(args.seed)
self.width, self.height = args.W, args.H
self.device = device
# Load pretrained weights with error handling
try:
denoising_unet.load_state_dict(
torch.load(config.denoising_unet_path, map_location="cpu"),
strict=False,
)
reference_unet.load_state_dict(
torch.load(config.reference_unet_path, map_location="cpu"),
)
pose_guider.load_state_dict(
torch.load(config.pose_guider_path, map_location="cpu"),
)
print("Successfully loaded all model weights")
except Exception as e:
print(f"Error loading model weights: {e}")
raise
self.pipe = Pose2VideoPipeline(
vae=vae,
image_encoder=image_enc,
reference_unet=reference_unet,
denoising_unet=denoising_unet,
pose_guider=pose_guider,
scheduler=scheduler,
)
self.pipe = self.pipe.to(device, dtype=weight_dtype)
self.args = args
# Load mask with error handling
mask_path = os.path.join(self.args.assets_dir, 'masks', 'alpha2.png')
try:
self.mask_list = load_mask_list(mask_path) if os.path.exists(mask_path) else None
except Exception as e:
print(f"Warning: Could not load mask: {e}")
self.mask_list = None
except Exception as e:
print(f"Error initializing MIMO: {e}")
raise
def load_template(self, template_path):
video_path = os.path.join(template_path, 'vid.mp4')
pose_video_path = os.path.join(template_path, 'sdc.mp4')
bk_video_path = os.path.join(template_path, 'bk.mp4')
occ_video_path = os.path.join(template_path, 'occ.mp4')
if not os.path.exists(occ_video_path):
occ_video_path = None
config_file = os.path.join(template_path, 'config.json')
with open(config_file) as f:
template_data = json.load(f)
template_info = {}
template_info['video_path'] = video_path
template_info['pose_video_path'] = pose_video_path
template_info['bk_video_path'] = bk_video_path
template_info['occ_video_path'] = occ_video_path
template_info['target_fps'] = template_data['fps']
template_info['time_crop'] = template_data['time_crop']
template_info['frame_crop'] = template_data['frame_crop']
template_info['layer_recover'] = template_data['layer_recover']
return template_info
@spaces.GPU(duration=60) # Allocate GPU for 60 seconds
def run(self, ref_image_pil, template_name):
try:
template_dir = os.path.join(self.args.assets_dir, 'video_template')
template_path = os.path.join(template_dir, template_name)
if not os.path.exists(template_path):
return None, f"Template {template_name} not found"
template_info = self.load_template(template_path)
target_fps = template_info['target_fps']
video_path = template_info['video_path']
pose_video_path = template_info['pose_video_path']
bk_video_path = template_info['bk_video_path']
occ_video_path = template_info['occ_video_path']
# Process reference image
source_image = np.array(ref_image_pil)
source_image, mask = process_seg(source_image[..., ::-1])
source_image = source_image[..., ::-1]
source_image = crop_img(source_image, mask)
source_image, _ = pad_img(source_image, [255, 255, 255])
ref_image_pil = Image.fromarray(source_image)
# Load template videos
vid_images = read_frames(video_path)
if bk_video_path is None or not os.path.exists(bk_video_path):
n_frame = len(vid_images)
tw, th = vid_images[0].size
bk_images = init_bk(n_frame, tw, th)
else:
bk_images = read_frames(bk_video_path)
if occ_video_path is not None and os.path.exists(occ_video_path):
occ_mask_images = read_frames(occ_video_path)
print('load occ from %s' % occ_video_path)
else:
occ_mask_images = None
print('no occ masks')
pose_images = read_frames(pose_video_path)
src_fps = get_fps(pose_video_path)
start_idx, end_idx = template_info['time_crop']['start_idx'], template_info['time_crop']['end_idx']
start_idx = max(0, start_idx)
end_idx = min(len(pose_images), end_idx)
pose_images = pose_images[start_idx:end_idx]
vid_images = vid_images[start_idx:end_idx]
bk_images = bk_images[start_idx:end_idx]
if occ_mask_images is not None:
occ_mask_images = occ_mask_images[start_idx:end_idx]
self.args.L = len(pose_images)
max_n_frames = self.args.MAX_FRAME_NUM
if self.args.L > max_n_frames:
pose_images = pose_images[:max_n_frames]
vid_images = vid_images[:max_n_frames]
bk_images = bk_images[:max_n_frames]
if occ_mask_images is not None:
occ_mask_images = occ_mask_images[:max_n_frames]
self.args.L = len(pose_images)
bk_images_ori = bk_images.copy()
vid_images_ori = vid_images.copy()
overlay = 4
pose_images, vid_images, bk_images, bbox_clip, context_list, bbox_clip_list = crop_human_clip_auto_context(
pose_images, vid_images, bk_images, overlay)
clip_pad_list_context = []
clip_padv_list_context = []
pose_list_context = []
vid_bk_list_context = []
for frame_idx in range(len(pose_images)):
pose_image_pil = pose_images[frame_idx]
pose_image = np.array(pose_image_pil)
pose_image, _ = pad_img(pose_image, color=[0, 0, 0])
pose_image_pil = Image.fromarray(pose_image)
pose_list_context.append(pose_image_pil)
vid_bk = bk_images[frame_idx]
vid_bk = np.array(vid_bk)
vid_bk, padding_v = pad_img(vid_bk, color=[255, 255, 255])
pad_h, pad_w, _ = vid_bk.shape
clip_pad_list_context.append([pad_h, pad_w])
clip_padv_list_context.append(padding_v)
vid_bk_list_context.append(Image.fromarray(vid_bk))
print('Starting inference...')
with torch.no_grad():
video = self.pipe(
ref_image_pil,
pose_list_context,
vid_bk_list_context,
self.width,
self.height,
len(pose_list_context),
self.args.steps,
self.args.cfg,
generator=self.generator,
).videos[0]
# Post-process video
video_idx = 0
res_images = [None for _ in range(self.args.L)]
for k, context in enumerate(context_list):
start_i = context[0]
bbox = bbox_clip_list[k]
for i in context:
bk_image_pil_ori = bk_images_ori[i]
vid_image_pil_ori = vid_images_ori[i]
if occ_mask_images is not None:
occ_mask = occ_mask_images[i]
else:
occ_mask = None
canvas = Image.new("RGB", bk_image_pil_ori.size, "white")
pad_h, pad_w = clip_pad_list_context[video_idx]
padding_v = clip_padv_list_context[video_idx]
image = video[:, video_idx, :, :].permute(1, 2, 0).cpu().numpy()
res_image_pil = Image.fromarray((image * 255).astype(np.uint8))
res_image_pil = res_image_pil.resize((pad_w, pad_h))
top, bottom, left, right = padding_v
res_image_pil = res_image_pil.crop((left, top, pad_w - right, pad_h - bottom))
w_min, w_max, h_min, h_max = bbox
canvas.paste(res_image_pil, (w_min, h_min))
mask_full = np.zeros((bk_image_pil_ori.size[1], bk_image_pil_ori.size[0]), dtype=np.float32)
res_image = np.array(canvas)
bk_image = np.array(bk_image_pil_ori)
if self.mask_list is not None:
mask = get_mask(self.mask_list, bbox, bk_image_pil_ori)
mask = cv2.resize(mask, res_image_pil.size, interpolation=cv2.INTER_AREA)
mask_full[h_min:h_min + mask.shape[0], w_min:w_min + mask.shape[1]] = mask
else:
# Use simple rectangle mask if no mask list available
mask_full[h_min:h_max, w_min:w_max] = 1.0
res_image = res_image * mask_full[:, :, np.newaxis] + bk_image * (1 - mask_full[:, :, np.newaxis])
if occ_mask is not None:
vid_image = np.array(vid_image_pil_ori)
occ_mask = np.array(occ_mask)[:, :, 0].astype(np.uint8)
occ_mask = occ_mask / 255.0
res_image = res_image * (1 - occ_mask[:, :, np.newaxis]) + vid_image * occ_mask[:, :, np.newaxis]
if res_images[i] is None:
res_images[i] = res_image
else:
factor = (i - start_i + 1) / (overlay + 1)
res_images[i] = res_images[i] * (1 - factor) + res_image * factor
res_images[i] = res_images[i].astype(np.uint8)
video_idx = video_idx + 1
return res_images
except Exception as e:
print(f"Error during inference: {e}")
return None
class WebApp():
def __init__(self, debug_mode=False):
self.args_base = {
"device": "cuda" if torch.cuda.is_available() else "cpu",
"output_dir": "output_demo",
"img": None,
"pos_prompt": '',
"motion": "sports_basketball_gym",
"motion_dir": "./assets/test_video_trunc",
}
self.args_input = {}
self.gr_motion = list(MOTION_TRIGGER_WORD.keys())
self.debug_mode = debug_mode
# Initialize model with error handling
try:
self.model = MIMO()
print("MIMO model loaded successfully")
except Exception as e:
print(f"Error loading MIMO model: {e}")
self.model = None
def title(self):
gr.HTML(
"""
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<div>
<h1>🎭 MIMO Demo - Controllable Character Video Synthesis</h1>
<p>Transform character images into animated videos with controllable motion and scenes</p>
<p><a href="https://menyifang.github.io/projects/MIMO/index.html" target="_blank">Project Page</a> |
<a href="https://arxiv.org/abs/2409.16160" target="_blank">Paper</a> |
<a href="https://github.com/menyifang/MIMO" target="_blank">GitHub</a></p>
</div>
</div>
"""
)
def get_template(self, num_cols=3):
self.args_input['motion'] = gr.State('sports_basketball_gym')
num_cols = 2
# Create example gallery (simplified for HF Spaces)
template_examples = []
for motion in self.gr_motion:
example_path = os.path.join(self.args_base['motion_dir'], f"{motion}.mp4")
if os.path.exists(example_path):
template_examples.append((example_path, motion))
else:
# Use placeholder if template video doesn't exist
template_examples.append((None, motion))
lora_gallery = gr.Gallery(
label='Motion Templates',
columns=num_cols,
height=400,
value=template_examples,
show_label=True,
selected_index=0
)
lora_gallery.select(self._update_selection, inputs=[], outputs=[self.args_input['motion']])
def _update_selection(self, selected_state: gr.SelectData):
return self.gr_motion[selected_state.index]
def run_process(self, *values):
if self.model is None:
return None, "❌ Model not loaded. Please refresh the page."
try:
gr_args = self.args_base.copy()
for k, v in zip(list(self.args_input.keys()), values):
gr_args[k] = v
ref_image_pil = gr_args['img']
template_name = gr_args['motion']
if ref_image_pil is None:
return None, "⚠️ Please upload an image first."
print(f'Processing with template: {template_name}')
save_dir = 'output'
os.makedirs(save_dir, exist_ok=True)
case = datetime.now().strftime("%Y%m%d%H%M%S")
outpath = f"{save_dir}/{case}.mp4"
res = self.model.run(ref_image_pil, template_name)
if res is None:
return None, "❌ Failed to generate video. Please try again or select a different template."
imageio.mimsave(outpath, res, fps=30, quality=8, macro_block_size=1)
print(f'Video saved to: {outpath}')
return outpath, "βœ… Video generated successfully!"
except Exception as e:
print(f"Error in processing: {e}")
return None, f"❌ Error: {str(e)}"
def preset_library(self):
with gr.Blocks() as demo:
with gr.Accordion(label="🧭 Instructions", open=True):
gr.Markdown("""
### How to use:
1. **Upload a character image**: Use a full-body, front-facing image with clear visibility (no occlusion or handheld objects work best)
2. **Select motion template**: Choose from the available motion templates in the gallery
3. **Generate**: Click "Run" to create your character animation
### Tips:
- Best results with clear, well-lit character images
- Processing may take 1-2 minutes depending on video length
- GPU acceleration is automatically used when available
""")
with gr.Row():
with gr.Column():
img_input = gr.Image(label='Upload Character Image', type="pil", elem_id="fixed_size_img")
self.args_input['img'] = img_input
submit_btn = gr.Button("🎬 Generate Animation", variant='primary', size="lg")
status_text = gr.Textbox(label="Status", interactive=False, value="Ready to generate...")
with gr.Column():
self.get_template(num_cols=2)
with gr.Column():
res_vid = gr.Video(format="mp4", label="Generated Animation", autoplay=True, elem_id="fixed_size_img")
submit_btn.click(
self.run_process,
inputs=list(self.args_input.values()),
outputs=[res_vid, status_text],
scroll_to_output=True,
)
# Add examples if available
example_images = []
example_dir = './assets/test_image'
if os.path.exists(example_dir):
for img_name in ['sugar.jpg', 'ouwen1.png', 'actorhq_A1S1.png', 'cartoon1.png', 'avatar.jpg']:
img_path = os.path.join(example_dir, img_name)
if os.path.exists(img_path):
example_images.append([img_path])
if example_images:
gr.Examples(
examples=example_images,
inputs=[img_input],
examples_per_page=5,
label="Example Images"
)
def ui(self):
with gr.Blocks(css=css_style, title="MIMO - Controllable Character Video Synthesis") as demo:
self.title()
self.preset_library()
return demo
# Initialize and run
print("Initializing MIMO demo...")
app = WebApp(debug_mode=False)
demo = app.ui()
if __name__ == "__main__":
demo.queue(max_size=10)
# For Hugging Face Spaces
demo.launch(server_name="0.0.0.0", server_port=7860, share=False)