File size: 13,725 Bytes
6f2c7f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
import argparse
import os
from datetime import datetime
from pathlib import Path
from typing import List
import numpy as np
import torch
import torchvision
from diffusers import AutoencoderKL, DDIMScheduler
from omegaconf import OmegaConf
from PIL import Image
from transformers import CLIPVisionModelWithProjection
from src.models.pose_guider import PoseGuider
from src.models.unet_2d_condition import UNet2DConditionModel
from src.models.unet_3d_edit_bkfill import UNet3DConditionModel
from src.pipelines.pipeline_pose2vid_long_edit_bkfill_roiclip import Pose2VideoPipeline
from src.utils.util import get_fps, read_frames
import cv2
from tools.human_segmenter import human_segmenter
import imageio
from tools.util import all_file, load_mask_list, crop_img, pad_img, crop_human_clip_auto_context, get_mask, \
refine_img_prepross, recover_bk
from tools.util import load_video_fixed_fps
import json
seg_path = './assets/matting_human.pb'
segmenter = human_segmenter(model_path=seg_path)
def init_bk(n_frame, tw, th):
"""Initialize background images with white background"""
bk_images = []
for _ in range(n_frame):
bk_img = Image.new('RGB', (tw, th), (255, 255, 255))
bk_images.append(bk_img)
return bk_images
def process_seg(img):
rgba = segmenter.run(img)
mask = rgba[:, :, 3]
color = rgba[:, :, :3]
alpha = mask / 255
bk = np.ones_like(color) * 255
color = color * alpha[:, :, np.newaxis] + bk * (1 - alpha[:, :, np.newaxis])
color = color.astype(np.uint8)
return color, mask
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default='./configs/prompts/animation_edit.yaml')
parser.add_argument("-W", type=int, default=784)
parser.add_argument("-H", type=int, default=784)
parser.add_argument("-L", type=int, default=64)
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--cfg", type=float, default=3.5)
parser.add_argument("--steps", type=int, default=25)
parser.add_argument("--fps", type=int)
parser.add_argument("--assets_dir", type=str, default='./assets')
parser.add_argument("--ref_pad", type=int, default=1)
parser.add_argument("--use_bk", type=int, default=1)
parser.add_argument("--clip_length", type=int, default=32)
parser.add_argument("--MAX_FRAME_NUM", type=int, default=150)
args = parser.parse_args()
return args
class MIMO():
def __init__(self, debug_mode=False):
args = parse_args()
config = OmegaConf.load(args.config)
# Auto-detect device (CPU/CUDA)
if torch.cuda.is_available():
self.device = "cuda"
print("🚀 Using CUDA GPU for inference")
else:
self.device = "cpu"
print("⚠️ CUDA not available, running on CPU (will be slow)")
if config.weight_dtype == "fp16" and self.device == "cuda":
weight_dtype = torch.float16
else:
weight_dtype = torch.float32
vae = AutoencoderKL.from_pretrained(
config.pretrained_vae_path,
).to(self.device, dtype=weight_dtype)
reference_unet = UNet2DConditionModel.from_pretrained(
config.pretrained_base_model_path,
subfolder="unet",
).to(dtype=weight_dtype, device=self.device)
inference_config_path = config.inference_config
infer_config = OmegaConf.load(inference_config_path)
denoising_unet = UNet3DConditionModel.from_pretrained_2d(
config.pretrained_base_model_path,
config.motion_module_path,
subfolder="unet",
unet_additional_kwargs=infer_config.unet_additional_kwargs,
).to(dtype=weight_dtype, device=self.device)
pose_guider = PoseGuider(320, conditioning_channels=3, block_out_channels=(16, 32, 96, 256)).to(
dtype=weight_dtype, device=self.device
)
image_enc = CLIPVisionModelWithProjection.from_pretrained(
config.image_encoder_path
).to(dtype=weight_dtype, device=self.device)
sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs)
scheduler = DDIMScheduler(**sched_kwargs)
self.generator = torch.manual_seed(args.seed)
self.width, self.height = args.W, args.H
# load pretrained weights
denoising_unet.load_state_dict(
torch.load(config.denoising_unet_path, map_location="cpu"),
strict=False,
)
reference_unet.load_state_dict(
torch.load(config.reference_unet_path, map_location="cpu"),
)
pose_guider.load_state_dict(
torch.load(config.pose_guider_path, map_location="cpu"),
)
self.pipe = Pose2VideoPipeline(
vae=vae,
image_encoder=image_enc,
reference_unet=reference_unet,
denoising_unet=denoising_unet,
pose_guider=pose_guider,
scheduler=scheduler,
)
self.pipe = self.pipe.to(self.device, dtype=weight_dtype)
self.args = args
# load mask
mask_path = os.path.join(self.args.assets_dir, 'masks', 'alpha2.png')
self.mask_list = load_mask_list(mask_path)
def load_template(self, template_path):
video_path = os.path.join(template_path, 'vid.mp4')
pose_video_path = os.path.join(template_path, 'sdc.mp4')
bk_video_path = os.path.join(template_path, 'bk.mp4')
occ_video_path = os.path.join(template_path, 'occ.mp4')
if not os.path.exists(occ_video_path):
occ_video_path = None
config_file = os.path.join(template_path, 'config.json')
with open(config_file) as f:
template_data = json.load(f)
template_info = {}
template_info['video_path'] = video_path
template_info['pose_video_path'] = pose_video_path
template_info['bk_video_path'] = bk_video_path
template_info['occ_video_path'] = occ_video_path
template_info['target_fps'] = template_data['fps']
template_info['time_crop'] = template_data['time_crop']
template_info['frame_crop'] = template_data['frame_crop']
template_info['layer_recover'] = template_data['layer_recover']
return template_info
def run(self, ref_img_path, template_path):
template_name = os.path.basename(template_path)
template_info = self.load_template(template_path)
target_fps = template_info['target_fps']
video_path = template_info['video_path']
pose_video_path = template_info['pose_video_path']
bk_video_path = template_info['bk_video_path']
occ_video_path = template_info['occ_video_path']
ref_image_pil = Image.open(ref_img_path).convert('RGB')
source_image = np.array(ref_image_pil)
source_image, mask = process_seg(source_image[..., ::-1])
source_image = source_image[..., ::-1]
source_image = crop_img(source_image, mask)
source_image, _ = pad_img(source_image, [255, 255, 255])
ref_image_pil = Image.fromarray(source_image)
# load tgt
vid_images = load_video_fixed_fps(video_path, target_fps=target_fps)
if bk_video_path is None:
n_frame = len(vid_images)
tw, th = vid_images[0].size
bk_images = init_bk(n_frame, tw, th)
else:
bk_images = load_video_fixed_fps(bk_video_path, target_fps=target_fps)
if occ_video_path is not None:
occ_mask_images = load_video_fixed_fps(occ_video_path, target_fps=target_fps)
print('load occ from %s' % occ_video_path)
else:
occ_mask_images = None
print('no occ masks')
pose_images = load_video_fixed_fps(pose_video_path, target_fps=target_fps)
src_fps = get_fps(pose_video_path)
start_idx, end_idx = template_info['time_crop']['start_idx'], template_info['time_crop']['end_idx']
start_idx = int(target_fps * start_idx / 30)
end_idx = int(target_fps * end_idx / 30)
start_idx = max(0, start_idx)
end_idx = min(len(pose_images), end_idx)
pose_images = pose_images[start_idx:end_idx]
vid_images = vid_images[start_idx:end_idx]
bk_images = bk_images[start_idx:end_idx]
if occ_mask_images is not None:
occ_mask_images = occ_mask_images[start_idx:end_idx]
self.args.L = len(pose_images)
max_n_frames = self.args.MAX_FRAME_NUM
if self.args.L > max_n_frames:
pose_images = pose_images[:max_n_frames]
vid_images = vid_images[:max_n_frames]
bk_images = bk_images[:max_n_frames]
if occ_mask_images is not None:
occ_mask_images = occ_mask_images[:max_n_frames]
self.args.L = len(pose_images)
bk_images_ori = bk_images.copy()
vid_images_ori = vid_images.copy()
overlay = 4
pose_images, vid_images, bk_images, bbox_clip, context_list, bbox_clip_list = crop_human_clip_auto_context(
pose_images, vid_images, bk_images, overlay)
clip_pad_list_context = []
clip_padv_list_context = []
pose_list_context = []
vid_bk_list_context = []
for frame_idx in range(len(pose_images)):
pose_image_pil = pose_images[frame_idx]
pose_image = np.array(pose_image_pil)
pose_image, _ = pad_img(pose_image, color=[0, 0, 0])
pose_image_pil = Image.fromarray(pose_image)
pose_list_context.append(pose_image_pil)
vid_bk = bk_images[frame_idx]
vid_bk = np.array(vid_bk)
vid_bk, padding_v = pad_img(vid_bk, color=[255, 255, 255])
pad_h, pad_w, _ = vid_bk.shape
clip_pad_list_context.append([pad_h, pad_w])
clip_padv_list_context.append(padding_v)
vid_bk_list_context.append(Image.fromarray(vid_bk))
print('start to infer...')
video = self.pipe(
ref_image_pil,
pose_list_context,
vid_bk_list_context,
self.width,
self.height,
len(pose_list_context),
self.args.steps,
self.args.cfg,
generator=self.generator,
).videos[0]
# post-process video
video_idx = 0
res_images = [None for _ in range(self.args.L)]
for k, context in enumerate(context_list):
start_i = context[0]
bbox = bbox_clip_list[k]
for i in context:
bk_image_pil_ori = bk_images_ori[i]
vid_image_pil_ori = vid_images_ori[i]
if occ_mask_images is not None:
occ_mask = occ_mask_images[i]
else:
occ_mask = None
canvas = Image.new("RGB", bk_image_pil_ori.size, "white")
pad_h, pad_w = clip_pad_list_context[video_idx]
padding_v = clip_padv_list_context[video_idx]
image = video[:, video_idx, :, :].permute(1, 2, 0).cpu().numpy()
res_image_pil = Image.fromarray((image * 255).astype(np.uint8))
res_image_pil = res_image_pil.resize((pad_w, pad_h))
top, bottom, left, right = padding_v
res_image_pil = res_image_pil.crop((left, top, pad_w - right, pad_h - bottom))
w_min, w_max, h_min, h_max = bbox
canvas.paste(res_image_pil, (w_min, h_min))
mask_full = np.zeros((bk_image_pil_ori.size[1], bk_image_pil_ori.size[0]), dtype=np.float32)
mask = get_mask(self.mask_list, bbox, bk_image_pil_ori)
mask = cv2.resize(mask, res_image_pil.size, interpolation=cv2.INTER_AREA)
mask_full[h_min:h_min + mask.shape[0], w_min:w_min + mask.shape[1]] = mask
res_image = np.array(canvas)
bk_image = np.array(bk_image_pil_ori)
res_image = res_image * mask_full[:, :, np.newaxis] + bk_image * (1 - mask_full[:, :, np.newaxis])
if occ_mask is not None:
vid_image = np.array(vid_image_pil_ori)
occ_mask = np.array(occ_mask)[:, :, 0].astype(np.uint8) # [0,255]
occ_mask = occ_mask / 255.0
res_image = res_image * (1 - occ_mask[:, :, np.newaxis]) + vid_image * occ_mask[:, :,
np.newaxis]
if res_images[i] is None:
res_images[i] = res_image
else:
factor = (i - start_i + 1) / (overlay + 1)
res_images[i] = res_images[i] * (1 - factor) + res_image * factor
res_images[i] = res_images[i].astype(np.uint8)
video_idx = video_idx + 1
return res_images, target_fps
def main():
model = MIMO()
ref_img_path = './assets/test_image/sugar.jpg'
template_path = './assets/video_template/sports_basketball_gym'
save_dir = 'output'
if not os.path.exists(save_dir):
os.makedirs(save_dir)
print('refer_img: %s' % ref_img_path)
print('template_vid: %s' % template_path)
ref_name = os.path.basename(ref_img_path).split('.')[0]
template_name = os.path.basename(template_path)
outpath = f"{save_dir}/{template_name}_{ref_name}.mp4"
res, target_fps = model.run(ref_img_path, template_path)
imageio.mimsave(outpath, res, fps=target_fps, quality=8, macro_block_size=1)
print('save to %s' % outpath)
if __name__ == "__main__":
main()
|