File size: 13,725 Bytes
6f2c7f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
import argparse
import os
from datetime import datetime
from pathlib import Path
from typing import List
import numpy as np
import torch
import torchvision
from diffusers import AutoencoderKL, DDIMScheduler
from omegaconf import OmegaConf
from PIL import Image
from transformers import CLIPVisionModelWithProjection
from src.models.pose_guider import PoseGuider
from src.models.unet_2d_condition import UNet2DConditionModel
from src.models.unet_3d_edit_bkfill import UNet3DConditionModel
from src.pipelines.pipeline_pose2vid_long_edit_bkfill_roiclip import Pose2VideoPipeline
from src.utils.util import get_fps, read_frames
import cv2
from tools.human_segmenter import human_segmenter
import imageio
from tools.util import all_file, load_mask_list, crop_img, pad_img, crop_human_clip_auto_context, get_mask, \
    refine_img_prepross, recover_bk
from tools.util import load_video_fixed_fps
import json

seg_path = './assets/matting_human.pb'
segmenter = human_segmenter(model_path=seg_path)


def init_bk(n_frame, tw, th):
    """Initialize background images with white background"""
    bk_images = []
    for _ in range(n_frame):
        bk_img = Image.new('RGB', (tw, th), (255, 255, 255))
        bk_images.append(bk_img)
    return bk_images


def process_seg(img):
    rgba = segmenter.run(img)
    mask = rgba[:, :, 3]
    color = rgba[:, :, :3]
    alpha = mask / 255
    bk = np.ones_like(color) * 255
    color = color * alpha[:, :, np.newaxis] + bk * (1 - alpha[:, :, np.newaxis])
    color = color.astype(np.uint8)
    return color, mask


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--config", type=str, default='./configs/prompts/animation_edit.yaml')
    parser.add_argument("-W", type=int, default=784)
    parser.add_argument("-H", type=int, default=784)
    parser.add_argument("-L", type=int, default=64)
    parser.add_argument("--seed", type=int, default=42)
    parser.add_argument("--cfg", type=float, default=3.5)
    parser.add_argument("--steps", type=int, default=25)
    parser.add_argument("--fps", type=int)
    parser.add_argument("--assets_dir", type=str, default='./assets')
    parser.add_argument("--ref_pad", type=int, default=1)
    parser.add_argument("--use_bk", type=int, default=1)
    parser.add_argument("--clip_length", type=int, default=32)
    parser.add_argument("--MAX_FRAME_NUM", type=int, default=150)
    args = parser.parse_args()
    return args


class MIMO():
    def __init__(self, debug_mode=False):
        args = parse_args()

        config = OmegaConf.load(args.config)

        # Auto-detect device (CPU/CUDA)
        if torch.cuda.is_available():
            self.device = "cuda"
            print("🚀 Using CUDA GPU for inference")
        else:
            self.device = "cpu"
            print("⚠️ CUDA not available, running on CPU (will be slow)")

        if config.weight_dtype == "fp16" and self.device == "cuda":
            weight_dtype = torch.float16
        else:
            weight_dtype = torch.float32

        vae = AutoencoderKL.from_pretrained(
            config.pretrained_vae_path,
        ).to(self.device, dtype=weight_dtype)

        reference_unet = UNet2DConditionModel.from_pretrained(
            config.pretrained_base_model_path,
            subfolder="unet",
        ).to(dtype=weight_dtype, device=self.device)

        inference_config_path = config.inference_config
        infer_config = OmegaConf.load(inference_config_path)
        denoising_unet = UNet3DConditionModel.from_pretrained_2d(
            config.pretrained_base_model_path,
            config.motion_module_path,
            subfolder="unet",
            unet_additional_kwargs=infer_config.unet_additional_kwargs,
        ).to(dtype=weight_dtype, device=self.device)

        pose_guider = PoseGuider(320, conditioning_channels=3, block_out_channels=(16, 32, 96, 256)).to(
            dtype=weight_dtype, device=self.device
        )

        image_enc = CLIPVisionModelWithProjection.from_pretrained(
            config.image_encoder_path
        ).to(dtype=weight_dtype, device=self.device)

        sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs)
        scheduler = DDIMScheduler(**sched_kwargs)

        self.generator = torch.manual_seed(args.seed)

        self.width, self.height = args.W, args.H

        # load pretrained weights
        denoising_unet.load_state_dict(
            torch.load(config.denoising_unet_path, map_location="cpu"),
            strict=False,
        )
        reference_unet.load_state_dict(
            torch.load(config.reference_unet_path, map_location="cpu"),
        )
        pose_guider.load_state_dict(
            torch.load(config.pose_guider_path, map_location="cpu"),
        )

        self.pipe = Pose2VideoPipeline(
            vae=vae,
            image_encoder=image_enc,
            reference_unet=reference_unet,
            denoising_unet=denoising_unet,
            pose_guider=pose_guider,
            scheduler=scheduler,
        )
        self.pipe = self.pipe.to(self.device, dtype=weight_dtype)

        self.args = args

        # load mask
        mask_path = os.path.join(self.args.assets_dir, 'masks', 'alpha2.png')
        self.mask_list = load_mask_list(mask_path)

    def load_template(self, template_path):
        video_path = os.path.join(template_path, 'vid.mp4')
        pose_video_path = os.path.join(template_path, 'sdc.mp4')
        bk_video_path = os.path.join(template_path, 'bk.mp4')
        occ_video_path = os.path.join(template_path, 'occ.mp4')
        if not os.path.exists(occ_video_path):
            occ_video_path = None
        config_file = os.path.join(template_path, 'config.json')
        with open(config_file) as f:
            template_data = json.load(f)
        template_info = {}
        template_info['video_path'] = video_path
        template_info['pose_video_path'] = pose_video_path
        template_info['bk_video_path'] = bk_video_path
        template_info['occ_video_path'] = occ_video_path
        template_info['target_fps'] = template_data['fps']
        template_info['time_crop'] = template_data['time_crop']
        template_info['frame_crop'] = template_data['frame_crop']
        template_info['layer_recover'] = template_data['layer_recover']
        return template_info

    def run(self, ref_img_path, template_path):

        template_name = os.path.basename(template_path)
        template_info = self.load_template(template_path)

        target_fps = template_info['target_fps']
        video_path = template_info['video_path']
        pose_video_path = template_info['pose_video_path']
        bk_video_path = template_info['bk_video_path']
        occ_video_path = template_info['occ_video_path']

        ref_image_pil = Image.open(ref_img_path).convert('RGB')
        source_image = np.array(ref_image_pil)
        source_image, mask = process_seg(source_image[..., ::-1])
        source_image = source_image[..., ::-1]
        source_image = crop_img(source_image, mask)
        source_image, _ = pad_img(source_image, [255, 255, 255])
        ref_image_pil = Image.fromarray(source_image)

        # load tgt
        vid_images = load_video_fixed_fps(video_path, target_fps=target_fps)

        if bk_video_path is None:
            n_frame = len(vid_images)
            tw, th = vid_images[0].size
            bk_images = init_bk(n_frame, tw, th)
        else:
            bk_images = load_video_fixed_fps(bk_video_path, target_fps=target_fps)

        if occ_video_path is not None:
            occ_mask_images = load_video_fixed_fps(occ_video_path, target_fps=target_fps)
            print('load occ from %s' % occ_video_path)
        else:
            occ_mask_images = None
            print('no occ masks')

        pose_images = load_video_fixed_fps(pose_video_path, target_fps=target_fps)
        src_fps = get_fps(pose_video_path)

        start_idx, end_idx = template_info['time_crop']['start_idx'], template_info['time_crop']['end_idx']
        start_idx = int(target_fps * start_idx / 30)
        end_idx = int(target_fps * end_idx / 30)
        start_idx = max(0, start_idx)
        end_idx = min(len(pose_images), end_idx)

        pose_images = pose_images[start_idx:end_idx]
        vid_images = vid_images[start_idx:end_idx]
        bk_images = bk_images[start_idx:end_idx]
        if occ_mask_images is not None:
            occ_mask_images = occ_mask_images[start_idx:end_idx]

        self.args.L = len(pose_images)
        max_n_frames = self.args.MAX_FRAME_NUM
        if self.args.L > max_n_frames:
            pose_images = pose_images[:max_n_frames]
            vid_images = vid_images[:max_n_frames]
            bk_images = bk_images[:max_n_frames]
            if occ_mask_images is not None:
                occ_mask_images = occ_mask_images[:max_n_frames]
            self.args.L = len(pose_images)

        bk_images_ori = bk_images.copy()
        vid_images_ori = vid_images.copy()

        overlay = 4
        pose_images, vid_images, bk_images, bbox_clip, context_list, bbox_clip_list = crop_human_clip_auto_context(
            pose_images, vid_images, bk_images, overlay)

        clip_pad_list_context = []
        clip_padv_list_context = []
        pose_list_context = []
        vid_bk_list_context = []
        for frame_idx in range(len(pose_images)):
            pose_image_pil = pose_images[frame_idx]
            pose_image = np.array(pose_image_pil)
            pose_image, _ = pad_img(pose_image, color=[0, 0, 0])
            pose_image_pil = Image.fromarray(pose_image)
            pose_list_context.append(pose_image_pil)

            vid_bk = bk_images[frame_idx]
            vid_bk = np.array(vid_bk)
            vid_bk, padding_v = pad_img(vid_bk, color=[255, 255, 255])
            pad_h, pad_w, _ = vid_bk.shape
            clip_pad_list_context.append([pad_h, pad_w])
            clip_padv_list_context.append(padding_v)
            vid_bk_list_context.append(Image.fromarray(vid_bk))

        print('start to infer...')
        video = self.pipe(
            ref_image_pil,
            pose_list_context,
            vid_bk_list_context,
            self.width,
            self.height,
            len(pose_list_context),
            self.args.steps,
            self.args.cfg,
            generator=self.generator,
        ).videos[0]

        # post-process video
        video_idx = 0
        res_images = [None for _ in range(self.args.L)]
        for k, context in enumerate(context_list):
            start_i = context[0]
            bbox = bbox_clip_list[k]
            for i in context:
                bk_image_pil_ori = bk_images_ori[i]
                vid_image_pil_ori = vid_images_ori[i]
                if occ_mask_images is not None:
                    occ_mask = occ_mask_images[i]
                else:
                    occ_mask = None

                canvas = Image.new("RGB", bk_image_pil_ori.size, "white")

                pad_h, pad_w = clip_pad_list_context[video_idx]
                padding_v = clip_padv_list_context[video_idx]

                image = video[:, video_idx, :, :].permute(1, 2, 0).cpu().numpy()
                res_image_pil = Image.fromarray((image * 255).astype(np.uint8))
                res_image_pil = res_image_pil.resize((pad_w, pad_h))

                top, bottom, left, right = padding_v
                res_image_pil = res_image_pil.crop((left, top, pad_w - right, pad_h - bottom))

                w_min, w_max, h_min, h_max = bbox
                canvas.paste(res_image_pil, (w_min, h_min))

                mask_full = np.zeros((bk_image_pil_ori.size[1], bk_image_pil_ori.size[0]), dtype=np.float32)
                mask = get_mask(self.mask_list, bbox, bk_image_pil_ori)
                mask = cv2.resize(mask, res_image_pil.size, interpolation=cv2.INTER_AREA)
                mask_full[h_min:h_min + mask.shape[0], w_min:w_min + mask.shape[1]] = mask

                res_image = np.array(canvas)
                bk_image = np.array(bk_image_pil_ori)
                res_image = res_image * mask_full[:, :, np.newaxis] + bk_image * (1 - mask_full[:, :, np.newaxis])

                if occ_mask is not None:
                    vid_image = np.array(vid_image_pil_ori)
                    occ_mask = np.array(occ_mask)[:, :, 0].astype(np.uint8)  # [0,255]
                    occ_mask = occ_mask / 255.0
                    res_image = res_image * (1 - occ_mask[:, :, np.newaxis]) + vid_image * occ_mask[:, :,
                                                                                           np.newaxis]
                if res_images[i] is None:
                    res_images[i] = res_image
                else:
                    factor = (i - start_i + 1) / (overlay + 1)
                    res_images[i] = res_images[i] * (1 - factor) + res_image * factor
                res_images[i] = res_images[i].astype(np.uint8)

                video_idx = video_idx + 1

        return res_images, target_fps


def main():
    model = MIMO()

    ref_img_path = './assets/test_image/sugar.jpg'

    template_path = './assets/video_template/sports_basketball_gym'

    save_dir = 'output'
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)

    print('refer_img: %s' % ref_img_path)
    print('template_vid: %s' % template_path)

    ref_name = os.path.basename(ref_img_path).split('.')[0]
    template_name = os.path.basename(template_path)
    outpath = f"{save_dir}/{template_name}_{ref_name}.mp4"

    res, target_fps = model.run(ref_img_path, template_path)
    imageio.mimsave(outpath, res, fps=target_fps, quality=8, macro_block_size=1)
    print('save to %s' % outpath)


if __name__ == "__main__":
    main()