File size: 10,742 Bytes
6f2c7f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
#!/usr/bin/env python3
"""
MIMO - Fast Startup Version for HuggingFace Spaces
Minimal imports to prevent timeout, full features loaded on demand
"""

import os
import gradio as gr

# Optional: small warmup function so Spaces runtime detects a GPU task and removes
# the startup warning "No @spaces.GPU function detected". This does NOT import
# heavy ML libs; it only checks environment lazily at call. If spaces package
# isn't available the decorator import will fail silently.
try:  # keep ultra-safe
    import spaces

    @spaces.GPU
    def warmup_gpu():  # lightweight, returns availability flag
        try:
            # defer torch import until after user installs heavy deps
            import importlib
            torch_spec = importlib.util.find_spec("torch")
            if torch_spec is None:
                return {"cuda": False, "detail": "torch not installed yet"}
            import torch  # type: ignore
            return {"cuda": torch.cuda.is_available()}
        except Exception as _e:  # noqa: N806
            return {"cuda": False, "detail": str(_e)}
except Exception:
    # spaces not present; ignore – minimal build still works
    pass

def create_simple_interface():
    """Create a simple interface that loads quickly"""

    def setup_and_load():
        """Force-clean and install modern stack, stub missing functorch symbol early, then validate.

        Steps:
        1. Uninstall conflicting packages (torch, torchvision, diffusers, transformers, peft, accelerate, safetensors).
        2. Install torch/torchvision first (CPU build to reduce risk) then other libs pinned.
        3. Pre-create functorch eager_transforms.grad_and_value stub if absent BEFORE importing transformers/diffusers.
        4. Validate imports.
        """
        try:
            import subprocess, sys, importlib, traceback, types

            def run(cmd):
                try:
                    subprocess.check_call(cmd, stdout=subprocess.DEVNULL, stderr=subprocess.STDOUT)
                    return True
                except Exception:
                    return False

            def pip_install(spec):
                ok = run([sys.executable, '-m', 'pip', 'install', '--no-cache-dir', spec])
                return ok, (f"Installed {spec}" if ok else f"Failed {spec}")

            messages = []
            # 1. Force uninstall
            uninstall_list = [
                'diffusers', 'transformers', 'torchvision', 'torch', 'peft', 'accelerate', 'safetensors'
            ]
            for pkg in uninstall_list:
                run([sys.executable, '-m', 'pip', 'uninstall', '-y', pkg])
            messages.append("Forced uninstall of prior core packages (best-effort)")

            # 2. Install core (CPU torch to avoid GPU wheel delays; pipeline mainly uses GPU later if available)
            core_specs = [ 'torch==2.0.1', 'torchvision==0.15.2' ]
            for spec in core_specs:
                ok, msg = pip_install(spec)
                messages.append(msg)

            # 3. Pre-stub functorch symbol before any heavy imports
            try:
                import importlib
                fx_mod = importlib.import_module('torch._functorch.eager_transforms')
                if not hasattr(fx_mod, 'grad_and_value'):
                    # Create lightweight placeholder using autograd backward pass simulation
                    def grad_and_value(f):
                        def wrapper(*a, **kw):
                            import torch
                            x = f(*a, **kw)
                            try:
                                if isinstance(x, torch.Tensor) and x.requires_grad:
                                    g = torch.autograd.grad(x, [t for t in a if isinstance(t, torch.Tensor) and t.requires_grad], allow_unused=True)
                                else:
                                    g = None
                            except Exception:
                                g = None
                            return g, x
                        return wrapper
                    setattr(fx_mod, 'grad_and_value', grad_and_value)
                    messages.append('Stubbed functorch.grad_and_value')
                else:
                    messages.append('functorch.grad_and_value present')
            except Exception as e:
                messages.append(f'Could not prepare functorch stub: {e}')

            # 4. Install remainder
            # Phase 1: Core ML libs (force clean versions)
            stack_specs_phase1 = [
                "huggingface_hub==0.23.0",
                "safetensors==0.4.5",
                "diffusers==0.21.4",
                "transformers==4.35.2",
                "peft==0.7.1",
                "accelerate==0.25.0",
            ]
            for spec in stack_specs_phase1:
                ok, msg = pip_install(spec)
                messages.append(msg)

            # Phase 2: Utility libs needed by app_hf_spaces.py
            stack_specs_phase2 = [
                "einops==0.7.0",
                "opencv-python-headless==4.8.1.78",
                "imageio==2.31.6",
                "imageio-ffmpeg==0.4.8",
                "tqdm==4.66.1",
            ]
            for spec in stack_specs_phase2:
                ok, msg = pip_install(spec)
                messages.append(msg)

            # Patch diffusers to disable ONNX (avoid _CAFFE2_ATEN_FALLBACK errors)
            try:
                import sys
                if 'diffusers' not in sys.modules:
                    import diffusers.utils.import_utils as diff_imports
                    diff_imports.is_onnx_available = lambda: False
                    messages.append('Patched diffusers.is_onnx_available = False')
            except Exception as e:
                messages.append(f'ONNX patch failed (non-critical): {e}')

            # Defer tensorflow until after core validation to reduce failure surface
            deferred_tensorflow = 'tensorflow-cpu==2.13.0'
            # 5. Validate imports with diffusers fallback chain
            def try_import(autoencoder_strict=False):
                import importlib
                import torch  # noqa: F401
                import diffusers  # noqa: F401
                import transformers  # noqa: F401
                if autoencoder_strict:
                    # direct AutoencoderKL import path changed in some versions
                    from diffusers import AutoencoderKL  # noqa: F401
                return True

            # Try import with fallback: 0.21.4 → 0.20.2
            diffusers_versions = ["0.21.4", "0.20.2"]
            last_error = None
            for idx, ver in enumerate(diffusers_versions):
                try:
                    # Reinstall target diffusers version fresh each attempt
                    run([sys.executable, '-m', 'pip', 'uninstall', '-y', 'diffusers'])
                    ok, msg = pip_install(f'diffusers=={ver}')
                    messages.append(msg)
                    if not ok:
                        last_error = msg
                        continue
                    # Relax autoencoder import for first attempts (some versions restructure)
                    strict = (ver == diffusers_versions[-1])
                    try_import(autoencoder_strict=strict)
                    messages.append(f'diffusers import OK at {ver} (strict={strict})')
                    last_error = None
                    break
                except Exception as e:
                    last_error = str(e)
                    messages.append(f'diffusers version {ver} failed: {e}')

            if last_error:
                messages.append(f'Final diffusers import failure after fallbacks: {last_error}')
                return '❌ Setup failed during import validation\n' + '\n'.join(messages)

            # Install deferred tensorflow optionally
            ok_tf, msg_tf = pip_install(deferred_tensorflow)
            messages.append(msg_tf)

            # Secondary optional: attempt AutoencoderKL explicit import to ensure availability (soft)
            try:
                from diffusers import AutoencoderKL  # noqa: F401
            except Exception as e:
                messages.append(f'Warning: AutoencoderKL direct import not required but failed: {e}')

            # 6. Try app import
            try:
                from app_hf_spaces import CompleteMIMO, gradio_interface  # noqa: F401
            except Exception as e:
                tb = traceback.format_exc(limit=2)
                messages.append(f'App import partial failure: {e}\n{tb}')
                return '⚠️ Core libs installed but app import failed\n' + '\n'.join(messages)

            return '✅ Clean stack installed! Please refresh to load full MIMO.\n' + '\n'.join(messages)

        except Exception as e:
            return f'❌ Setup failed: {e}'

    with gr.Blocks(title="MIMO - Loading...", theme=gr.themes.Soft()) as demo:
        gr.HTML("""
        <div style="text-align: center; padding: 2rem;">
            <h1>🎭 MIMO - Character Video Synthesis</h1>
            <p>Loading complete implementation...</p>
            <p>Click the button below to install remaining dependencies and activate full features.</p>
        </div>
        """)

        setup_btn = gr.Button("� Install Dependencies & Activate MIMO", variant="primary", size="lg")
        status = gr.Textbox(label="Status", interactive=False, lines=3)

        setup_btn.click(fn=setup_and_load, outputs=[status])

        gr.HTML("""
        <div style="margin-top: 2rem; padding: 1rem; background: #f0f0f0; border-radius: 8px;">
            <h4>Why this approach?</h4>
            <p>To prevent HuggingFace Spaces build timeout, we use minimal dependencies at startup.</p>
            <p>Full MIMO features (Character Animation + Video Editing) will be available after setup.</p>
        </div>
        """)

    return demo

"""
We do NOT attempt to import the full heavy implementation during build/startup.
The previous version tried a best-effort import inside a try/except. Even though it
failed fast, it still triggered Python to resolve heavy modules (torch/diffusers)
which aren't installed in the minimal build image. That adds noise and (in some
cases) delays. We now always start with the light interface; the user explicitly
chooses to install heavy dependencies.

Keeping changes minimal per user request: no extra files or new features, just a
safer lazy-loading path.
"""

# Always start with minimal interface (no premature heavy imports)
app = create_simple_interface()

if __name__ == "__main__":
    app.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,
        show_error=True
    )