File size: 25,642 Bytes
6f2c7f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 |
import argparse
import os
from datetime import datetime
from pathlib import Path
from typing import List
import av
import numpy as np
import torch
import torchvision
from diffusers import AutoencoderKL, DDIMScheduler
from omegaconf import OmegaConf
from PIL import Image
from transformers import CLIPVisionModelWithProjection
from src.models.pose_guider import PoseGuider
from src.models.unet_2d_condition import UNet2DConditionModel
from src.models.unet_3d_edit_bkfill import UNet3DConditionModel
from src.pipelines.pipeline_pose2vid_long_edit_bkfill_roiclip import Pose2VideoPipeline
from src.utils.util import get_fps, read_frames
import cv2
from tools.human_segmenter import human_segmenter
import imageio
from tools.util import all_file, load_mask_list, crop_img, pad_img, crop_human_clip_auto_context, get_mask, \
refine_img_prepross
import gradio as gr
import json
from huggingface_hub import snapshot_download
import spaces
MOTION_TRIGGER_WORD = {
'sports_basketball_gym': [],
'sports_nba_pass': [],
'sports_nba_dunk': [],
'movie_BruceLee1': [],
'shorts_kungfu_match1': [],
'shorts_kungfu_desert1': [],
'parkour_climbing': [],
'dance_indoor_1': [],
}
css_style = "#fixed_size_img {height: 500px;}"
def download_models():
"""Download required models from Hugging Face"""
print("Checking and downloading models...")
# Download main MIMO weights
if not os.path.exists('./pretrained_weights/denoising_unet.pth'):
print("Downloading MIMO model weights...")
try:
snapshot_download(
repo_id='menyifang/MIMO',
cache_dir='./pretrained_weights',
local_dir='./pretrained_weights',
local_dir_use_symlinks=False
)
except Exception as e:
print(f"Error downloading MIMO weights: {e}")
# Fallback to ModelScope if available
try:
from modelscope import snapshot_download as ms_snapshot_download
ms_snapshot_download(
model_id='iic/MIMO',
cache_dir='./pretrained_weights',
local_dir='./pretrained_weights'
)
except Exception as e2:
print(f"Error downloading from ModelScope: {e2}")
# Download base models if not present
if not os.path.exists('./pretrained_weights/stable-diffusion-v1-5'):
print("Downloading Stable Diffusion v1.5...")
try:
snapshot_download(
repo_id='runwayml/stable-diffusion-v1-5',
cache_dir='./pretrained_weights',
local_dir='./pretrained_weights/stable-diffusion-v1-5',
local_dir_use_symlinks=False
)
except Exception as e:
print(f"Error downloading SD v1.5: {e}")
if not os.path.exists('./pretrained_weights/sd-vae-ft-mse'):
print("Downloading VAE...")
try:
snapshot_download(
repo_id='stabilityai/sd-vae-ft-mse',
cache_dir='./pretrained_weights',
local_dir='./pretrained_weights/sd-vae-ft-mse',
local_dir_use_symlinks=False
)
except Exception as e:
print(f"Error downloading VAE: {e}")
if not os.path.exists('./pretrained_weights/image_encoder'):
print("Downloading Image Encoder...")
try:
snapshot_download(
repo_id='lambdalabs/sd-image-variations-diffusers',
cache_dir='./pretrained_weights',
local_dir='./pretrained_weights/image_encoder',
local_dir_use_symlinks=False,
subfolder='image_encoder'
)
except Exception as e:
print(f"Error downloading image encoder: {e}")
# Download assets if not present
if not os.path.exists('./assets'):
print("Downloading assets...")
# This would need to be uploaded to HF or provided another way
# For now, create minimal required structure
os.makedirs('./assets/masks', exist_ok=True)
os.makedirs('./assets/test_image', exist_ok=True)
os.makedirs('./assets/video_template', exist_ok=True)
def init_bk(n_frame, tw, th):
"""Initialize background frames"""
bk_images = []
for _ in range(n_frame):
bk_img = Image.new('RGB', (tw, th), color='white')
bk_images.append(bk_img)
return bk_images
# Initialize segmenter with error handling
seg_path = './assets/matting_human.pb'
try:
segmenter = human_segmenter(model_path=seg_path) if os.path.exists(seg_path) else None
except Exception as e:
print(f"Warning: Could not initialize segmenter: {e}")
segmenter = None
def process_seg(img):
"""Process image segmentation with fallback"""
if segmenter is None:
# Fallback: return original image with dummy mask
img_array = np.array(img) if isinstance(img, Image.Image) else img
mask = np.ones((img_array.shape[0], img_array.shape[1]), dtype=np.uint8) * 255
return img_array, mask
try:
rgba = segmenter.run(img)
mask = rgba[:, :, 3]
color = rgba[:, :, :3]
alpha = mask / 255
bk = np.ones_like(color) * 255
color = color * alpha[:, :, np.newaxis] + bk * (1 - alpha[:, :, np.newaxis])
color = color.astype(np.uint8)
return color, mask
except Exception as e:
print(f"Error in segmentation: {e}")
# Fallback to original image
img_array = np.array(img) if isinstance(img, Image.Image) else img
mask = np.ones((img_array.shape[0], img_array.shape[1]), dtype=np.uint8) * 255
return img_array, mask
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default='./configs/prompts/animation_edit.yaml')
parser.add_argument("-W", type=int, default=784)
parser.add_argument("-H", type=int, default=784)
parser.add_argument("-L", type=int, default=64)
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--cfg", type=float, default=3.5)
parser.add_argument("--steps", type=int, default=25)
parser.add_argument("--fps", type=int)
parser.add_argument("--assets_dir", type=str, default='./assets')
parser.add_argument("--ref_pad", type=int, default=1)
parser.add_argument("--use_bk", type=int, default=1)
parser.add_argument("--clip_length", type=int, default=32)
parser.add_argument("--MAX_FRAME_NUM", type=int, default=150)
args = parser.parse_args()
return args
class MIMO():
def __init__(self, debug_mode=False):
try:
# Download models first
download_models()
args = parse_args()
config = OmegaConf.load(args.config)
if config.weight_dtype == "fp16":
weight_dtype = torch.float16
else:
weight_dtype = torch.float32
# Check CUDA availability
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
if device == "cpu":
weight_dtype = torch.float32
print("Warning: Running on CPU, performance may be slow")
vae = AutoencoderKL.from_pretrained(
config.pretrained_vae_path,
).to(device, dtype=weight_dtype)
reference_unet = UNet2DConditionModel.from_pretrained(
config.pretrained_base_model_path,
subfolder="unet",
).to(dtype=weight_dtype, device=device)
inference_config_path = config.inference_config
infer_config = OmegaConf.load(inference_config_path)
denoising_unet = UNet3DConditionModel.from_pretrained_2d(
config.pretrained_base_model_path,
config.motion_module_path,
subfolder="unet",
unet_additional_kwargs=infer_config.unet_additional_kwargs,
).to(dtype=weight_dtype, device=device)
pose_guider = PoseGuider(320, conditioning_channels=3, block_out_channels=(16, 32, 96, 256)).to(
dtype=weight_dtype, device=device
)
image_enc = CLIPVisionModelWithProjection.from_pretrained(
config.image_encoder_path
).to(dtype=weight_dtype, device=device)
sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs)
scheduler = DDIMScheduler(**sched_kwargs)
self.generator = torch.manual_seed(args.seed)
self.width, self.height = args.W, args.H
self.device = device
# Load pretrained weights with error handling
try:
denoising_unet.load_state_dict(
torch.load(config.denoising_unet_path, map_location="cpu"),
strict=False,
)
reference_unet.load_state_dict(
torch.load(config.reference_unet_path, map_location="cpu"),
)
pose_guider.load_state_dict(
torch.load(config.pose_guider_path, map_location="cpu"),
)
print("Successfully loaded all model weights")
except Exception as e:
print(f"Error loading model weights: {e}")
raise
self.pipe = Pose2VideoPipeline(
vae=vae,
image_encoder=image_enc,
reference_unet=reference_unet,
denoising_unet=denoising_unet,
pose_guider=pose_guider,
scheduler=scheduler,
)
self.pipe = self.pipe.to(device, dtype=weight_dtype)
self.args = args
# Load mask with error handling
mask_path = os.path.join(self.args.assets_dir, 'masks', 'alpha2.png')
try:
self.mask_list = load_mask_list(mask_path) if os.path.exists(mask_path) else None
except Exception as e:
print(f"Warning: Could not load mask: {e}")
self.mask_list = None
except Exception as e:
print(f"Error initializing MIMO: {e}")
raise
def load_template(self, template_path):
video_path = os.path.join(template_path, 'vid.mp4')
pose_video_path = os.path.join(template_path, 'sdc.mp4')
bk_video_path = os.path.join(template_path, 'bk.mp4')
occ_video_path = os.path.join(template_path, 'occ.mp4')
if not os.path.exists(occ_video_path):
occ_video_path = None
config_file = os.path.join(template_path, 'config.json')
with open(config_file) as f:
template_data = json.load(f)
template_info = {}
template_info['video_path'] = video_path
template_info['pose_video_path'] = pose_video_path
template_info['bk_video_path'] = bk_video_path
template_info['occ_video_path'] = occ_video_path
template_info['target_fps'] = template_data['fps']
template_info['time_crop'] = template_data['time_crop']
template_info['frame_crop'] = template_data['frame_crop']
template_info['layer_recover'] = template_data['layer_recover']
return template_info
@spaces.GPU(duration=60) # Allocate GPU for 60 seconds
def run(self, ref_image_pil, template_name):
try:
template_dir = os.path.join(self.args.assets_dir, 'video_template')
template_path = os.path.join(template_dir, template_name)
if not os.path.exists(template_path):
return None, f"Template {template_name} not found"
template_info = self.load_template(template_path)
target_fps = template_info['target_fps']
video_path = template_info['video_path']
pose_video_path = template_info['pose_video_path']
bk_video_path = template_info['bk_video_path']
occ_video_path = template_info['occ_video_path']
# Process reference image
source_image = np.array(ref_image_pil)
source_image, mask = process_seg(source_image[..., ::-1])
source_image = source_image[..., ::-1]
source_image = crop_img(source_image, mask)
source_image, _ = pad_img(source_image, [255, 255, 255])
ref_image_pil = Image.fromarray(source_image)
# Load template videos
vid_images = read_frames(video_path)
if bk_video_path is None or not os.path.exists(bk_video_path):
n_frame = len(vid_images)
tw, th = vid_images[0].size
bk_images = init_bk(n_frame, tw, th)
else:
bk_images = read_frames(bk_video_path)
if occ_video_path is not None and os.path.exists(occ_video_path):
occ_mask_images = read_frames(occ_video_path)
print('load occ from %s' % occ_video_path)
else:
occ_mask_images = None
print('no occ masks')
pose_images = read_frames(pose_video_path)
src_fps = get_fps(pose_video_path)
start_idx, end_idx = template_info['time_crop']['start_idx'], template_info['time_crop']['end_idx']
start_idx = max(0, start_idx)
end_idx = min(len(pose_images), end_idx)
pose_images = pose_images[start_idx:end_idx]
vid_images = vid_images[start_idx:end_idx]
bk_images = bk_images[start_idx:end_idx]
if occ_mask_images is not None:
occ_mask_images = occ_mask_images[start_idx:end_idx]
self.args.L = len(pose_images)
max_n_frames = self.args.MAX_FRAME_NUM
if self.args.L > max_n_frames:
pose_images = pose_images[:max_n_frames]
vid_images = vid_images[:max_n_frames]
bk_images = bk_images[:max_n_frames]
if occ_mask_images is not None:
occ_mask_images = occ_mask_images[:max_n_frames]
self.args.L = len(pose_images)
bk_images_ori = bk_images.copy()
vid_images_ori = vid_images.copy()
overlay = 4
pose_images, vid_images, bk_images, bbox_clip, context_list, bbox_clip_list = crop_human_clip_auto_context(
pose_images, vid_images, bk_images, overlay)
clip_pad_list_context = []
clip_padv_list_context = []
pose_list_context = []
vid_bk_list_context = []
for frame_idx in range(len(pose_images)):
pose_image_pil = pose_images[frame_idx]
pose_image = np.array(pose_image_pil)
pose_image, _ = pad_img(pose_image, color=[0, 0, 0])
pose_image_pil = Image.fromarray(pose_image)
pose_list_context.append(pose_image_pil)
vid_bk = bk_images[frame_idx]
vid_bk = np.array(vid_bk)
vid_bk, padding_v = pad_img(vid_bk, color=[255, 255, 255])
pad_h, pad_w, _ = vid_bk.shape
clip_pad_list_context.append([pad_h, pad_w])
clip_padv_list_context.append(padding_v)
vid_bk_list_context.append(Image.fromarray(vid_bk))
print('Starting inference...')
with torch.no_grad():
video = self.pipe(
ref_image_pil,
pose_list_context,
vid_bk_list_context,
self.width,
self.height,
len(pose_list_context),
self.args.steps,
self.args.cfg,
generator=self.generator,
).videos[0]
# Post-process video
video_idx = 0
res_images = [None for _ in range(self.args.L)]
for k, context in enumerate(context_list):
start_i = context[0]
bbox = bbox_clip_list[k]
for i in context:
bk_image_pil_ori = bk_images_ori[i]
vid_image_pil_ori = vid_images_ori[i]
if occ_mask_images is not None:
occ_mask = occ_mask_images[i]
else:
occ_mask = None
canvas = Image.new("RGB", bk_image_pil_ori.size, "white")
pad_h, pad_w = clip_pad_list_context[video_idx]
padding_v = clip_padv_list_context[video_idx]
image = video[:, video_idx, :, :].permute(1, 2, 0).cpu().numpy()
res_image_pil = Image.fromarray((image * 255).astype(np.uint8))
res_image_pil = res_image_pil.resize((pad_w, pad_h))
top, bottom, left, right = padding_v
res_image_pil = res_image_pil.crop((left, top, pad_w - right, pad_h - bottom))
w_min, w_max, h_min, h_max = bbox
canvas.paste(res_image_pil, (w_min, h_min))
mask_full = np.zeros((bk_image_pil_ori.size[1], bk_image_pil_ori.size[0]), dtype=np.float32)
res_image = np.array(canvas)
bk_image = np.array(bk_image_pil_ori)
if self.mask_list is not None:
mask = get_mask(self.mask_list, bbox, bk_image_pil_ori)
mask = cv2.resize(mask, res_image_pil.size, interpolation=cv2.INTER_AREA)
mask_full[h_min:h_min + mask.shape[0], w_min:w_min + mask.shape[1]] = mask
else:
# Use simple rectangle mask if no mask list available
mask_full[h_min:h_max, w_min:w_max] = 1.0
res_image = res_image * mask_full[:, :, np.newaxis] + bk_image * (1 - mask_full[:, :, np.newaxis])
if occ_mask is not None:
vid_image = np.array(vid_image_pil_ori)
occ_mask = np.array(occ_mask)[:, :, 0].astype(np.uint8)
occ_mask = occ_mask / 255.0
res_image = res_image * (1 - occ_mask[:, :, np.newaxis]) + vid_image * occ_mask[:, :, np.newaxis]
if res_images[i] is None:
res_images[i] = res_image
else:
factor = (i - start_i + 1) / (overlay + 1)
res_images[i] = res_images[i] * (1 - factor) + res_image * factor
res_images[i] = res_images[i].astype(np.uint8)
video_idx = video_idx + 1
return res_images
except Exception as e:
print(f"Error during inference: {e}")
return None
class WebApp():
def __init__(self, debug_mode=False):
self.args_base = {
"device": "cuda" if torch.cuda.is_available() else "cpu",
"output_dir": "output_demo",
"img": None,
"pos_prompt": '',
"motion": "sports_basketball_gym",
"motion_dir": "./assets/test_video_trunc",
}
self.args_input = {}
self.gr_motion = list(MOTION_TRIGGER_WORD.keys())
self.debug_mode = debug_mode
# Initialize model with error handling
try:
self.model = MIMO()
print("MIMO model loaded successfully")
except Exception as e:
print(f"Error loading MIMO model: {e}")
self.model = None
def title(self):
gr.HTML(
"""
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<div>
<h1>π MIMO Demo - Controllable Character Video Synthesis</h1>
<p>Transform character images into animated videos with controllable motion and scenes</p>
<p><a href="https://menyifang.github.io/projects/MIMO/index.html" target="_blank">Project Page</a> |
<a href="https://arxiv.org/abs/2409.16160" target="_blank">Paper</a> |
<a href="https://github.com/menyifang/MIMO" target="_blank">GitHub</a></p>
</div>
</div>
"""
)
def get_template(self, num_cols=3):
self.args_input['motion'] = gr.State('sports_basketball_gym')
num_cols = 2
# Create example gallery (simplified for HF Spaces)
template_examples = []
for motion in self.gr_motion:
example_path = os.path.join(self.args_base['motion_dir'], f"{motion}.mp4")
if os.path.exists(example_path):
template_examples.append((example_path, motion))
else:
# Use placeholder if template video doesn't exist
template_examples.append((None, motion))
lora_gallery = gr.Gallery(
label='Motion Templates',
columns=num_cols,
height=400,
value=template_examples,
show_label=True,
selected_index=0
)
lora_gallery.select(self._update_selection, inputs=[], outputs=[self.args_input['motion']])
def _update_selection(self, selected_state: gr.SelectData):
return self.gr_motion[selected_state.index]
def run_process(self, *values):
if self.model is None:
return None, "β Model not loaded. Please refresh the page."
try:
gr_args = self.args_base.copy()
for k, v in zip(list(self.args_input.keys()), values):
gr_args[k] = v
ref_image_pil = gr_args['img']
template_name = gr_args['motion']
if ref_image_pil is None:
return None, "β οΈ Please upload an image first."
print(f'Processing with template: {template_name}')
save_dir = 'output'
os.makedirs(save_dir, exist_ok=True)
case = datetime.now().strftime("%Y%m%d%H%M%S")
outpath = f"{save_dir}/{case}.mp4"
res = self.model.run(ref_image_pil, template_name)
if res is None:
return None, "β Failed to generate video. Please try again or select a different template."
imageio.mimsave(outpath, res, fps=30, quality=8, macro_block_size=1)
print(f'Video saved to: {outpath}')
return outpath, "β
Video generated successfully!"
except Exception as e:
print(f"Error in processing: {e}")
return None, f"β Error: {str(e)}"
def preset_library(self):
with gr.Blocks() as demo:
with gr.Accordion(label="π§ Instructions", open=True):
gr.Markdown("""
### How to use:
1. **Upload a character image**: Use a full-body, front-facing image with clear visibility (no occlusion or handheld objects work best)
2. **Select motion template**: Choose from the available motion templates in the gallery
3. **Generate**: Click "Run" to create your character animation
### Tips:
- Best results with clear, well-lit character images
- Processing may take 1-2 minutes depending on video length
- GPU acceleration is automatically used when available
""")
with gr.Row():
with gr.Column():
img_input = gr.Image(label='Upload Character Image', type="pil", elem_id="fixed_size_img")
self.args_input['img'] = img_input
submit_btn = gr.Button("π¬ Generate Animation", variant='primary', size="lg")
status_text = gr.Textbox(label="Status", interactive=False, value="Ready to generate...")
with gr.Column():
self.get_template(num_cols=2)
with gr.Column():
res_vid = gr.Video(format="mp4", label="Generated Animation", autoplay=True, elem_id="fixed_size_img")
submit_btn.click(
self.run_process,
inputs=list(self.args_input.values()),
outputs=[res_vid, status_text],
scroll_to_output=True,
)
# Add examples if available
example_images = []
example_dir = './assets/test_image'
if os.path.exists(example_dir):
for img_name in ['sugar.jpg', 'ouwen1.png', 'actorhq_A1S1.png', 'cartoon1.png', 'avatar.jpg']:
img_path = os.path.join(example_dir, img_name)
if os.path.exists(img_path):
example_images.append([img_path])
if example_images:
gr.Examples(
examples=example_images,
inputs=[img_input],
examples_per_page=5,
label="Example Images"
)
def ui(self):
with gr.Blocks(css=css_style, title="MIMO - Controllable Character Video Synthesis") as demo:
self.title()
self.preset_library()
return demo
# Initialize and run
print("Initializing MIMO demo...")
app = WebApp(debug_mode=False)
demo = app.ui()
if __name__ == "__main__":
demo.queue(max_size=10)
# For Hugging Face Spaces
demo.launch(server_name="0.0.0.0", server_port=7860, share=False) |