File size: 25,642 Bytes
6f2c7f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
import argparse
import os
from datetime import datetime
from pathlib import Path
from typing import List
import av
import numpy as np
import torch
import torchvision
from diffusers import AutoencoderKL, DDIMScheduler
from omegaconf import OmegaConf
from PIL import Image
from transformers import CLIPVisionModelWithProjection
from src.models.pose_guider import PoseGuider
from src.models.unet_2d_condition import UNet2DConditionModel
from src.models.unet_3d_edit_bkfill import UNet3DConditionModel
from src.pipelines.pipeline_pose2vid_long_edit_bkfill_roiclip import Pose2VideoPipeline
from src.utils.util import get_fps, read_frames
import cv2
from tools.human_segmenter import human_segmenter
import imageio
from tools.util import all_file, load_mask_list, crop_img, pad_img, crop_human_clip_auto_context, get_mask, \
    refine_img_prepross
import gradio as gr
import json
from huggingface_hub import snapshot_download
import spaces

MOTION_TRIGGER_WORD = {
    'sports_basketball_gym': [],
    'sports_nba_pass': [],
    'sports_nba_dunk': [],
    'movie_BruceLee1': [],
    'shorts_kungfu_match1': [],
    'shorts_kungfu_desert1': [],
    'parkour_climbing': [],
    'dance_indoor_1': [],
}
css_style = "#fixed_size_img {height: 500px;}"

def download_models():
    """Download required models from Hugging Face"""
    print("Checking and downloading models...")

    # Download main MIMO weights
    if not os.path.exists('./pretrained_weights/denoising_unet.pth'):
        print("Downloading MIMO model weights...")
        try:
            snapshot_download(
                repo_id='menyifang/MIMO',
                cache_dir='./pretrained_weights',
                local_dir='./pretrained_weights',
                local_dir_use_symlinks=False
            )
        except Exception as e:
            print(f"Error downloading MIMO weights: {e}")
            # Fallback to ModelScope if available
            try:
                from modelscope import snapshot_download as ms_snapshot_download
                ms_snapshot_download(
                    model_id='iic/MIMO',
                    cache_dir='./pretrained_weights',
                    local_dir='./pretrained_weights'
                )
            except Exception as e2:
                print(f"Error downloading from ModelScope: {e2}")

    # Download base models if not present
    if not os.path.exists('./pretrained_weights/stable-diffusion-v1-5'):
        print("Downloading Stable Diffusion v1.5...")
        try:
            snapshot_download(
                repo_id='runwayml/stable-diffusion-v1-5',
                cache_dir='./pretrained_weights',
                local_dir='./pretrained_weights/stable-diffusion-v1-5',
                local_dir_use_symlinks=False
            )
        except Exception as e:
            print(f"Error downloading SD v1.5: {e}")

    if not os.path.exists('./pretrained_weights/sd-vae-ft-mse'):
        print("Downloading VAE...")
        try:
            snapshot_download(
                repo_id='stabilityai/sd-vae-ft-mse',
                cache_dir='./pretrained_weights',
                local_dir='./pretrained_weights/sd-vae-ft-mse',
                local_dir_use_symlinks=False
            )
        except Exception as e:
            print(f"Error downloading VAE: {e}")

    if not os.path.exists('./pretrained_weights/image_encoder'):
        print("Downloading Image Encoder...")
        try:
            snapshot_download(
                repo_id='lambdalabs/sd-image-variations-diffusers',
                cache_dir='./pretrained_weights',
                local_dir='./pretrained_weights/image_encoder',
                local_dir_use_symlinks=False,
                subfolder='image_encoder'
            )
        except Exception as e:
            print(f"Error downloading image encoder: {e}")

    # Download assets if not present
    if not os.path.exists('./assets'):
        print("Downloading assets...")
        # This would need to be uploaded to HF or provided another way
        # For now, create minimal required structure
        os.makedirs('./assets/masks', exist_ok=True)
        os.makedirs('./assets/test_image', exist_ok=True)
        os.makedirs('./assets/video_template', exist_ok=True)

def init_bk(n_frame, tw, th):
    """Initialize background frames"""
    bk_images = []
    for _ in range(n_frame):
        bk_img = Image.new('RGB', (tw, th), color='white')
        bk_images.append(bk_img)
    return bk_images

# Initialize segmenter with error handling
seg_path = './assets/matting_human.pb'
try:
    segmenter = human_segmenter(model_path=seg_path) if os.path.exists(seg_path) else None
except Exception as e:
    print(f"Warning: Could not initialize segmenter: {e}")
    segmenter = None

def process_seg(img):
    """Process image segmentation with fallback"""
    if segmenter is None:
        # Fallback: return original image with dummy mask
        img_array = np.array(img) if isinstance(img, Image.Image) else img
        mask = np.ones((img_array.shape[0], img_array.shape[1]), dtype=np.uint8) * 255
        return img_array, mask

    try:
        rgba = segmenter.run(img)
        mask = rgba[:, :, 3]
        color = rgba[:, :, :3]
        alpha = mask / 255
        bk = np.ones_like(color) * 255
        color = color * alpha[:, :, np.newaxis] + bk * (1 - alpha[:, :, np.newaxis])
        color = color.astype(np.uint8)
        return color, mask
    except Exception as e:
        print(f"Error in segmentation: {e}")
        # Fallback to original image
        img_array = np.array(img) if isinstance(img, Image.Image) else img
        mask = np.ones((img_array.shape[0], img_array.shape[1]), dtype=np.uint8) * 255
        return img_array, mask

def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--config", type=str, default='./configs/prompts/animation_edit.yaml')
    parser.add_argument("-W", type=int, default=784)
    parser.add_argument("-H", type=int, default=784)
    parser.add_argument("-L", type=int, default=64)
    parser.add_argument("--seed", type=int, default=42)
    parser.add_argument("--cfg", type=float, default=3.5)
    parser.add_argument("--steps", type=int, default=25)
    parser.add_argument("--fps", type=int)
    parser.add_argument("--assets_dir", type=str, default='./assets')
    parser.add_argument("--ref_pad", type=int, default=1)
    parser.add_argument("--use_bk", type=int, default=1)
    parser.add_argument("--clip_length", type=int, default=32)
    parser.add_argument("--MAX_FRAME_NUM", type=int, default=150)
    args = parser.parse_args()
    return args

class MIMO():
    def __init__(self, debug_mode=False):
        try:
            # Download models first
            download_models()

            args = parse_args()
            config = OmegaConf.load(args.config)

            if config.weight_dtype == "fp16":
                weight_dtype = torch.float16
            else:
                weight_dtype = torch.float32

            # Check CUDA availability
            device = "cuda" if torch.cuda.is_available() else "cpu"
            print(f"Using device: {device}")

            if device == "cpu":
                weight_dtype = torch.float32
                print("Warning: Running on CPU, performance may be slow")

            vae = AutoencoderKL.from_pretrained(
                config.pretrained_vae_path,
            ).to(device, dtype=weight_dtype)

            reference_unet = UNet2DConditionModel.from_pretrained(
                config.pretrained_base_model_path,
                subfolder="unet",
            ).to(dtype=weight_dtype, device=device)

            inference_config_path = config.inference_config
            infer_config = OmegaConf.load(inference_config_path)
            denoising_unet = UNet3DConditionModel.from_pretrained_2d(
                config.pretrained_base_model_path,
                config.motion_module_path,
                subfolder="unet",
                unet_additional_kwargs=infer_config.unet_additional_kwargs,
            ).to(dtype=weight_dtype, device=device)

            pose_guider = PoseGuider(320, conditioning_channels=3, block_out_channels=(16, 32, 96, 256)).to(
                dtype=weight_dtype, device=device
            )

            image_enc = CLIPVisionModelWithProjection.from_pretrained(
                config.image_encoder_path
            ).to(dtype=weight_dtype, device=device)

            sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs)
            scheduler = DDIMScheduler(**sched_kwargs)

            self.generator = torch.manual_seed(args.seed)
            self.width, self.height = args.W, args.H
            self.device = device

            # Load pretrained weights with error handling
            try:
                denoising_unet.load_state_dict(
                    torch.load(config.denoising_unet_path, map_location="cpu"),
                    strict=False,
                )
                reference_unet.load_state_dict(
                    torch.load(config.reference_unet_path, map_location="cpu"),
                )
                pose_guider.load_state_dict(
                    torch.load(config.pose_guider_path, map_location="cpu"),
                )
                print("Successfully loaded all model weights")
            except Exception as e:
                print(f"Error loading model weights: {e}")
                raise

            self.pipe = Pose2VideoPipeline(
                vae=vae,
                image_encoder=image_enc,
                reference_unet=reference_unet,
                denoising_unet=denoising_unet,
                pose_guider=pose_guider,
                scheduler=scheduler,
            )
            self.pipe = self.pipe.to(device, dtype=weight_dtype)

            self.args = args

            # Load mask with error handling
            mask_path = os.path.join(self.args.assets_dir, 'masks', 'alpha2.png')
            try:
                self.mask_list = load_mask_list(mask_path) if os.path.exists(mask_path) else None
            except Exception as e:
                print(f"Warning: Could not load mask: {e}")
                self.mask_list = None

        except Exception as e:
            print(f"Error initializing MIMO: {e}")
            raise

    def load_template(self, template_path):
        video_path = os.path.join(template_path, 'vid.mp4')
        pose_video_path = os.path.join(template_path, 'sdc.mp4')
        bk_video_path = os.path.join(template_path, 'bk.mp4')
        occ_video_path = os.path.join(template_path, 'occ.mp4')
        if not os.path.exists(occ_video_path):
            occ_video_path = None
        config_file = os.path.join(template_path, 'config.json')
        with open(config_file) as f:
            template_data = json.load(f)
        template_info = {}
        template_info['video_path'] = video_path
        template_info['pose_video_path'] = pose_video_path
        template_info['bk_video_path'] = bk_video_path
        template_info['occ_video_path'] = occ_video_path
        template_info['target_fps'] = template_data['fps']
        template_info['time_crop'] = template_data['time_crop']
        template_info['frame_crop'] = template_data['frame_crop']
        template_info['layer_recover'] = template_data['layer_recover']
        return template_info

    @spaces.GPU(duration=60)  # Allocate GPU for 60 seconds
    def run(self, ref_image_pil, template_name):
        try:
            template_dir = os.path.join(self.args.assets_dir, 'video_template')
            template_path = os.path.join(template_dir, template_name)

            if not os.path.exists(template_path):
                return None, f"Template {template_name} not found"

            template_info = self.load_template(template_path)

            target_fps = template_info['target_fps']
            video_path = template_info['video_path']
            pose_video_path = template_info['pose_video_path']
            bk_video_path = template_info['bk_video_path']
            occ_video_path = template_info['occ_video_path']

            # Process reference image
            source_image = np.array(ref_image_pil)
            source_image, mask = process_seg(source_image[..., ::-1])
            source_image = source_image[..., ::-1]
            source_image = crop_img(source_image, mask)
            source_image, _ = pad_img(source_image, [255, 255, 255])
            ref_image_pil = Image.fromarray(source_image)

            # Load template videos
            vid_images = read_frames(video_path)
            if bk_video_path is None or not os.path.exists(bk_video_path):
                n_frame = len(vid_images)
                tw, th = vid_images[0].size
                bk_images = init_bk(n_frame, tw, th)
            else:
                bk_images = read_frames(bk_video_path)

            if occ_video_path is not None and os.path.exists(occ_video_path):
                occ_mask_images = read_frames(occ_video_path)
                print('load occ from %s' % occ_video_path)
            else:
                occ_mask_images = None
                print('no occ masks')

            pose_images = read_frames(pose_video_path)
            src_fps = get_fps(pose_video_path)

            start_idx, end_idx = template_info['time_crop']['start_idx'], template_info['time_crop']['end_idx']
            start_idx = max(0, start_idx)
            end_idx = min(len(pose_images), end_idx)

            pose_images = pose_images[start_idx:end_idx]
            vid_images = vid_images[start_idx:end_idx]
            bk_images = bk_images[start_idx:end_idx]
            if occ_mask_images is not None:
                occ_mask_images = occ_mask_images[start_idx:end_idx]

            self.args.L = len(pose_images)
            max_n_frames = self.args.MAX_FRAME_NUM
            if self.args.L > max_n_frames:
                pose_images = pose_images[:max_n_frames]
                vid_images = vid_images[:max_n_frames]
                bk_images = bk_images[:max_n_frames]
                if occ_mask_images is not None:
                    occ_mask_images = occ_mask_images[:max_n_frames]
                self.args.L = len(pose_images)

            bk_images_ori = bk_images.copy()
            vid_images_ori = vid_images.copy()

            overlay = 4
            pose_images, vid_images, bk_images, bbox_clip, context_list, bbox_clip_list = crop_human_clip_auto_context(
                pose_images, vid_images, bk_images, overlay)

            clip_pad_list_context = []
            clip_padv_list_context = []
            pose_list_context = []
            vid_bk_list_context = []

            for frame_idx in range(len(pose_images)):
                pose_image_pil = pose_images[frame_idx]
                pose_image = np.array(pose_image_pil)
                pose_image, _ = pad_img(pose_image, color=[0, 0, 0])
                pose_image_pil = Image.fromarray(pose_image)
                pose_list_context.append(pose_image_pil)

                vid_bk = bk_images[frame_idx]
                vid_bk = np.array(vid_bk)
                vid_bk, padding_v = pad_img(vid_bk, color=[255, 255, 255])
                pad_h, pad_w, _ = vid_bk.shape
                clip_pad_list_context.append([pad_h, pad_w])
                clip_padv_list_context.append(padding_v)
                vid_bk_list_context.append(Image.fromarray(vid_bk))

            print('Starting inference...')
            with torch.no_grad():
                video = self.pipe(
                    ref_image_pil,
                    pose_list_context,
                    vid_bk_list_context,
                    self.width,
                    self.height,
                    len(pose_list_context),
                    self.args.steps,
                    self.args.cfg,
                    generator=self.generator,
                ).videos[0]

            # Post-process video
            video_idx = 0
            res_images = [None for _ in range(self.args.L)]

            for k, context in enumerate(context_list):
                start_i = context[0]
                bbox = bbox_clip_list[k]
                for i in context:
                    bk_image_pil_ori = bk_images_ori[i]
                    vid_image_pil_ori = vid_images_ori[i]
                    if occ_mask_images is not None:
                        occ_mask = occ_mask_images[i]
                    else:
                        occ_mask = None

                    canvas = Image.new("RGB", bk_image_pil_ori.size, "white")

                    pad_h, pad_w = clip_pad_list_context[video_idx]
                    padding_v = clip_padv_list_context[video_idx]

                    image = video[:, video_idx, :, :].permute(1, 2, 0).cpu().numpy()
                    res_image_pil = Image.fromarray((image * 255).astype(np.uint8))
                    res_image_pil = res_image_pil.resize((pad_w, pad_h))

                    top, bottom, left, right = padding_v
                    res_image_pil = res_image_pil.crop((left, top, pad_w - right, pad_h - bottom))

                    w_min, w_max, h_min, h_max = bbox
                    canvas.paste(res_image_pil, (w_min, h_min))

                    mask_full = np.zeros((bk_image_pil_ori.size[1], bk_image_pil_ori.size[0]), dtype=np.float32)
                    res_image = np.array(canvas)
                    bk_image = np.array(bk_image_pil_ori)

                    if self.mask_list is not None:
                        mask = get_mask(self.mask_list, bbox, bk_image_pil_ori)
                        mask = cv2.resize(mask, res_image_pil.size, interpolation=cv2.INTER_AREA)
                        mask_full[h_min:h_min + mask.shape[0], w_min:w_min + mask.shape[1]] = mask
                    else:
                        # Use simple rectangle mask if no mask list available
                        mask_full[h_min:h_max, w_min:w_max] = 1.0

                    res_image = res_image * mask_full[:, :, np.newaxis] + bk_image * (1 - mask_full[:, :, np.newaxis])

                    if occ_mask is not None:
                        vid_image = np.array(vid_image_pil_ori)
                        occ_mask = np.array(occ_mask)[:, :, 0].astype(np.uint8)
                        occ_mask = occ_mask / 255.0
                        res_image = res_image * (1 - occ_mask[:, :, np.newaxis]) + vid_image * occ_mask[:, :, np.newaxis]

                    if res_images[i] is None:
                        res_images[i] = res_image
                    else:
                        factor = (i - start_i + 1) / (overlay + 1)
                        res_images[i] = res_images[i] * (1 - factor) + res_image * factor
                    res_images[i] = res_images[i].astype(np.uint8)

                    video_idx = video_idx + 1

            return res_images

        except Exception as e:
            print(f"Error during inference: {e}")
            return None

class WebApp():
    def __init__(self, debug_mode=False):
        self.args_base = {
            "device": "cuda" if torch.cuda.is_available() else "cpu",
            "output_dir": "output_demo",
            "img": None,
            "pos_prompt": '',
            "motion": "sports_basketball_gym",
            "motion_dir": "./assets/test_video_trunc",
        }

        self.args_input = {}
        self.gr_motion = list(MOTION_TRIGGER_WORD.keys())
        self.debug_mode = debug_mode

        # Initialize model with error handling
        try:
            self.model = MIMO()
            print("MIMO model loaded successfully")
        except Exception as e:
            print(f"Error loading MIMO model: {e}")
            self.model = None

    def title(self):
        gr.HTML(
            """
            <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
                <div>
                    <h1>🎭 MIMO Demo - Controllable Character Video Synthesis</h1>
                    <p>Transform character images into animated videos with controllable motion and scenes</p>
                    <p><a href="https://menyifang.github.io/projects/MIMO/index.html" target="_blank">Project Page</a> |
                       <a href="https://arxiv.org/abs/2409.16160" target="_blank">Paper</a> |
                       <a href="https://github.com/menyifang/MIMO" target="_blank">GitHub</a></p>
                </div>
            </div>
            """
        )

    def get_template(self, num_cols=3):
        self.args_input['motion'] = gr.State('sports_basketball_gym')
        num_cols = 2

        # Create example gallery (simplified for HF Spaces)
        template_examples = []
        for motion in self.gr_motion:
            example_path = os.path.join(self.args_base['motion_dir'], f"{motion}.mp4")
            if os.path.exists(example_path):
                template_examples.append((example_path, motion))
            else:
                # Use placeholder if template video doesn't exist
                template_examples.append((None, motion))

        lora_gallery = gr.Gallery(
            label='Motion Templates',
            columns=num_cols,
            height=400,
            value=template_examples,
            show_label=True,
            selected_index=0
        )

        lora_gallery.select(self._update_selection, inputs=[], outputs=[self.args_input['motion']])

    def _update_selection(self, selected_state: gr.SelectData):
        return self.gr_motion[selected_state.index]

    def run_process(self, *values):
        if self.model is None:
            return None, "❌ Model not loaded. Please refresh the page."

        try:
            gr_args = self.args_base.copy()
            for k, v in zip(list(self.args_input.keys()), values):
                gr_args[k] = v

            ref_image_pil = gr_args['img']
            template_name = gr_args['motion']

            if ref_image_pil is None:
                return None, "⚠️ Please upload an image first."

            print(f'Processing with template: {template_name}')

            save_dir = 'output'
            os.makedirs(save_dir, exist_ok=True)
            case = datetime.now().strftime("%Y%m%d%H%M%S")
            outpath = f"{save_dir}/{case}.mp4"

            res = self.model.run(ref_image_pil, template_name)

            if res is None:
                return None, "❌ Failed to generate video. Please try again or select a different template."

            imageio.mimsave(outpath, res, fps=30, quality=8, macro_block_size=1)
            print(f'Video saved to: {outpath}')

            return outpath, "βœ… Video generated successfully!"

        except Exception as e:
            print(f"Error in processing: {e}")
            return None, f"❌ Error: {str(e)}"

    def preset_library(self):
        with gr.Blocks() as demo:
            with gr.Accordion(label="🧭 Instructions", open=True):
                gr.Markdown("""
                ### How to use:
                1. **Upload a character image**: Use a full-body, front-facing image with clear visibility (no occlusion or handheld objects work best)
                2. **Select motion template**: Choose from the available motion templates in the gallery
                3. **Generate**: Click "Run" to create your character animation

                ### Tips:
                - Best results with clear, well-lit character images
                - Processing may take 1-2 minutes depending on video length
                - GPU acceleration is automatically used when available
                """)

            with gr.Row():
                with gr.Column():
                    img_input = gr.Image(label='Upload Character Image', type="pil", elem_id="fixed_size_img")
                    self.args_input['img'] = img_input

                    submit_btn = gr.Button("🎬 Generate Animation", variant='primary', size="lg")

                    status_text = gr.Textbox(label="Status", interactive=False, value="Ready to generate...")

                with gr.Column():
                    self.get_template(num_cols=2)

                with gr.Column():
                    res_vid = gr.Video(format="mp4", label="Generated Animation", autoplay=True, elem_id="fixed_size_img")

            submit_btn.click(
                self.run_process,
                inputs=list(self.args_input.values()),
                outputs=[res_vid, status_text],
                scroll_to_output=True,
            )

            # Add examples if available
            example_images = []
            example_dir = './assets/test_image'
            if os.path.exists(example_dir):
                for img_name in ['sugar.jpg', 'ouwen1.png', 'actorhq_A1S1.png', 'cartoon1.png', 'avatar.jpg']:
                    img_path = os.path.join(example_dir, img_name)
                    if os.path.exists(img_path):
                        example_images.append([img_path])

            if example_images:
                gr.Examples(
                    examples=example_images,
                    inputs=[img_input],
                    examples_per_page=5,
                    label="Example Images"
                )

    def ui(self):
        with gr.Blocks(css=css_style, title="MIMO - Controllable Character Video Synthesis") as demo:
            self.title()
            self.preset_library()
        return demo

# Initialize and run
print("Initializing MIMO demo...")
app = WebApp(debug_mode=False)
demo = app.ui()

if __name__ == "__main__":
    demo.queue(max_size=10)
    # For Hugging Face Spaces
    demo.launch(server_name="0.0.0.0", server_port=7860, share=False)